Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Windy events detection in big bioacoustics datasets using a pre-trained Convolutional Neural Network

Articolo
Data di Pubblicazione:
2024
Abstract:
Passive Acoustic Monitoring (PAM), which involves using autonomous record units for studying wildlife behaviour and distribution, often requires handling big acoustic datasets collected over extended periods. While these data offer invaluable insights about wildlife, their analysis can present challenges in dealing with geophonic sources. A major issue in the process of detection of target sounds is represented by wind-induced noise. This can lead to false positive detections, i.e., energy peaks due to wind gusts misclassified as biological sounds, or false negative, i.e., the wind noise masks the presence of biological sounds. Acoustic data dominated by wind noise makes the analysis of vocal activity unreliable, thus compromising the detection of target sounds and, subsequently, the interpretation of the results. Our work introduces a straightforward approach for detecting recordings affected by windy events using a pre-trained convolutional neural network. This process facilitates identifying wind-compromised data. We consider this dataset pre-processing crucial for ensuring the reliable use of PAM data. We implemented this preprocessing by leveraging YAMNet, a deep learning model for sound classification tasks. We evaluated YAMNet as-is ability to detect wind-induced noise and tested its performance in a Transfer Learning scenario by using our annotated data from the Stony Point Penguin Colony in South Africa. While the classification of YAMNet as-is achieved a precision of 0.71, and recall of 0.66, those metrics strongly improved after the training on our annotated dataset, reaching a precision of 0.91, and recall of 0.92, corresponding to a relative increment of >28 %. Our study demonstrates the promising application of YAMNet in the bioacoustics and ecoacoustics fields, addressing the need for wind-noise-free acoustic data. We released an open-access code that, combined with the efficiency and peak performance of YAMNet, can be used on standard laptops for a broad user base.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Bioacoustics; Deep learning; Ecoacoustics; Passive Acoustic Monitoring; Soundscape ecology; Wind-noise
Elenco autori:
Terranova, Francesca; Betti, Lorenzo; Ferrario, Valeria; Friard, Olivier; Ludynia, Katrin; Petersen, Gavin Sean; Mathevon, Nicolas; Reby, David; Favaro, Livio
Autori di Ateneo:
FAVARO Livio
TERRANOVA FRANCESCA
Link alla scheda completa:
https://iris.unito.it/handle/2318/2003750
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2003750/1355748/1-s2.0-S0048969724050174-main.pdf
Pubblicato in:
SCIENCE OF THE TOTAL ENVIRONMENT
Journal
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://www.sciencedirect.com/science/article/pii/S0048969724050174?via=ihub

Aree Di Ricerca

Settori (11)


LS8_13 - Marine biology and ecology - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Agricoltura e Produzioni Vegetali

CIBO, AGRICOLTURA e ALLEVAMENTI - Allevamento e Produzioni Animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Chimica e cibo

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Miglioramento e difesa delle colture

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Energia e Fonti Energetiche

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Foreste e Legno

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Risorsa suolo e ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0