Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Heights and transcendence of p-adic continued fractions

Articolo
Data di Pubblicazione:
2025
Abstract:
Special kinds of continued fractions have been proved to converge to transcendental real numbers by means of the celebrated Subspace Theorem. In this paper we study the analogous p-adic problem. More specifically, we deal with Browkin p-adic continued fractions. First we give some new remarks about the Browkin algorithm in terms of a p-adic Euclidean algorithm. Then, we focus on the heights of some p-adic numbers having a periodic p-adic continued fraction expansion and we obtain some upper bounds. Finally, we exploit these results, together with p-adic Roth-like results, in order to prove the transcendence of three families of p-adic continued fractions.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Subspace theorem; Roth theorem and p-adic continued fractions; Transcendence
Elenco autori:
Longhi I.; Murru N.; Saettone F.M.
Autori di Ateneo:
LONGHI Ignazio
Link alla scheda completa:
https://iris.unito.it/handle/2318/2015790
Pubblicato in:
ANNALI DI MATEMATICA PURA ED APPLICATA
Journal
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://link.springer.com/article/10.1007/s10231-024-01476-6

Aree Di Ricerca

Settori (2)


PE1_3 - Number theory - (2024)

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Algebra e Geometria
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0