Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Explainable Emotion Decoding for Human and Computer Vision

Contributo in Atti di convegno
Data di Pubblicazione:
2024
Abstract:
Modern Machine Learning (ML) has significantly advanced various research fields, but the opaque nature of ML models hinders their adoption in several domains. Explainable AI (XAI) addresses this challenge by providing additional information to help users understand the internal decision-making process of ML models. In the field of neuroscience, enriching a ML model for brain decoding with attribution-based XAI techniques means being able to highlight which brain areas correlate with the task at hand, thus offering valuable insights to domain experts. In this paper, we analyze human and Computer Vision (CV) systems in parallel, training and explaining two ML models based respectively on functional Magnetic Resonance Imaging (fMRI) and movie frames. We do so by leveraging the “StudyForrest” dataset, which includes functional Magnetic Resonance Imaging (fMRI) scans of subjects watching the “Forrest Gump” movie, emotion annotations, and eye-tracking data. For human vision the ML task is to link fMRI data with emotional annotations, and the explanations highlight the brain regions strongly correlated with the label. On the other hand, for computer vision, the input data is movie frames, and the explanations are pixel-level heatmaps. We cross-analyzed our results, linking human attention (obtained through eye-tracking) with XAI saliency on CV models and brain region activations. We show how a parallel analysis of human and computer vision can provide useful information for both the neuroscience community (allocation theory) and the ML community (biological plausibility of convolutional models)
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
Computer Vision; Emotion Recognition; eXplainable Artificial Intelligence; NeuroImaging; Neuroscience
Elenco autori:
Borriero, A., Milzzo, M., Diano, M., Orsenigo, D., Villa, M.C., DiFazio, C., Tamietto, M., Perotti, A.
Autori di Ateneo:
DIANO Matteo
TAMIETTO Marco
Link alla scheda completa:
https://iris.unito.it/handle/2318/2018250
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2018250/1383828/final_8274.pdf
Titolo del libro:
Communications in Computer and Information Science
Progetto:
TAMIETTO M. - LIGHTUP - PROGETTO ERC - Grant n. 772953
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://www.springerprofessional.de/en/explainable-emotion-decoding-for-human-and-computer-vision/27331926

Aree Di Ricerca

Settori (17)


LS5_16 - Systems and computational neuroscience - (2024)

PE6_2 - Distributed systems, parallel computing, sensor networks, cyber-physical systems - (2024)

SH4_3 - Clinical and health psychology - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Patologia e malattie degli animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Scienze cliniche veterinarie

ECONOMIA, AZIENDE E ORGANIZZAZIONI - Sistemi e metodologie per la Qualità

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

MEDICINA, SALUTE e BENESSERE - Disturbi neuropsichiatrici

MEDICINA, SALUTE e BENESSERE - Epidemiologia

MEDICINA, SALUTE e BENESSERE - Fisiologia comportamentale

MEDICINA, SALUTE e BENESSERE - Malattie neurologiche e neurodegenerative

MEDICINA, SALUTE e BENESSERE - Oncologia e Tumori

MEDICINA, SALUTE e BENESSERE - Psicologia clinica

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Sviluppo del sistema nervoso e plasticità
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0