Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Spacelike convex surfaces with prescribed curvature in (2 + 1)-Minkowski space

Articolo
Data di Pubblicazione:
2017
Abstract:
We prove existence and uniqueness of solutions to the Minkowski problem in any domain of dependence D in (2+1)-dimensional Minkowski space, provided D is contained in the future cone over a point. Namely, it is possible to find a smooth convex Cauchy surface with prescribed curvature function on the image of the Gauss map. This is related to solutions of the Monge–Ampère equation det⁡D2u(z)=(1/ψ(z))(1−|z|2)−2 on the unit disc, with the boundary condition u|∂D=φ, for ψ a smooth positive function and φ a bounded lower semicontinuous function. We then prove that a domain of dependence D contains a convex Cauchy surface with principal curvatures bounded from below by a positive constant if and only if the corresponding function φ is in the Zygmund class. Moreover in this case the surface of constant curvature K contained in D has bounded principal curvatures, for every K<0. In this way we get a full classification of isometric immersions of the hyperbolic plane in Minkowski space with bounded shape operator in terms of Zygmund functions of ∂D. Finally, we prove that every domain of dependence as in the hypothesis of the Minkowski problem is foliated by the surfaces of constant curvature K, as K varies in (−∞,0).
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Constant curvature surfaces; Minkowski space; Monge–Ampère equation; Universal Teichmüller theory
Elenco autori:
Bonsante F.; Seppi A.
Autori di Ateneo:
SEPPI Andrea
Link alla scheda completa:
https://iris.unito.it/handle/2318/2025993
Pubblicato in:
ADVANCES IN MATHEMATICS
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (3)


PE1_6 - Geometry and global analysis - (2024)

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Algebra e Geometria

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Cosmologia e Universo
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0