Catching the Reversible Formation and Reactivity of Surface Defective Sites in Metal-Organic Frameworks: An Operando Ambient Pressure-NEXAFS Investigation
Articolo
Data di Pubblicazione:
2021
Abstract:
In this work, we apply for the first time ambient pressure operando soft X-ray absorption spectroscopy (XAS) to investigate the location, structural properties, and reactivity of the defective sites present in the prototypical metal-organic framework HKUST-1. We obtained direct evidence that Cu+defective sites form upon temperature treatment of the powdered form of HKUST-1 at 160 °C and that they are largely distributed on the material surface. Further, a thorough structural characterization of the Cu+/Cu2+dimeric complexes arising from the temperature-induced dehydration/decarboxylation of the pristine Cu2+/Cu2+paddlewheel units is reported. In addition to characterizing the surface defects, we demonstrate that CO2may be reversibly adsorbed and desorbed from the surface defective Cu+/Cu2+sites. These findings show that ambient pressure soft-XAS, combined with state-of-the-art theoretical calculations, allowed us to shed light on the mechanism involving the decarboxylation of the paddlewheel units on the surface to yield Cu+/Cu2+complexes and their reversible restoration upon exposure to gaseous CO2.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
Braglia L.; Tavani F.; Mauri S.; Edla R.; Krizmancic D.; Tofoni A.; Colombo V.; D'Angelo P.; Torelli P.
Link alla scheda completa:
Pubblicato in: