Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Machine learning approaches to enhance diagnosis and staging of patients with MASLD using routinely available clinical information

Articolo
Data di Pubblicazione:
2024
Abstract:
Aims Metabolic dysfunction Associated Steatotic Liver Disease (MASLD) outcomes such as MASH (metabolic dysfunction associated steatohepatitis), fibrosis and cirrhosis are ordinarily determined by resource-intensive and invasive biopsies. We aim to show that routine clinical tests offer sufficient information to predict these endpoints. Methods Using the LITMUS Metacohort derived from the European NAFLD Registry, the largest MASLD dataset in Europe, we create three combinations of features which vary in degree of procurement including a 19-variable feature set that are attained through a routine clinical appointment or blood test. This data was used to train predictive models using supervised machine learning (ML) algorithm XGBoost, alongside missing imputation technique MICE and class balancing algorithm SMOTE. Shapley Additive exPlanations (SHAP) were added to determine relative importance for each clinical variable. Results Analysing nine biopsy-derived MASLD outcomes of cohort size ranging between 5385 and 6673 subjects, we were able to predict individuals at training set AUCs ranging from 0.719-0.994, including classifying individuals who are At-Risk MASH at an AUC = 0.899. Using two further feature combinations of 26-variables and 35-variables, which included composite scores known to be good indicators for MASLD endpoints and advanced specialist tests, we found predictive performance did not sufficiently improve. We are also able to present local and global explanations for each ML model, offering clinicians interpretability without the expense of worsening predictive performance. Conclusions This study developed a series of ML models of accuracy ranging from 71.9—99.4% using only easily extractable and readily available information in predicting MASLD outcomes which are usually determined through highly invasive means.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
McTeer, Matthew; Applegate, Douglas; Mesenbrink, Peter; Ratziu, Vlad; Schattenberg, Jörn M.; Bugianesi, Elisabetta; Geier, Andreas; Romero Gomez, Manuel; Dufour, Jean-Francois; Ekstedt, Mattias; Francque, Sven; Yki-Jarvinen, Hannele; Allison, Michael; Valenti, Luca; Miele, Luca; Pavlides, Michael; Cobbold, Jeremy; Papatheodoridis, Georgios; Holleboom, Adriaan G.; Tiniakos, Dina; Brass, Clifford; Anstee, Quentin M.; Missier, Paolo; null, null
Autori di Ateneo:
BUGIANESI Elisabetta
Link alla scheda completa:
https://iris.unito.it/handle/2318/2033590
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2033590/1428178/Mc%20Teer%20PLOS%20ONE%202024.pdf
Pubblicato in:
PLOS ONE
Journal
Progetto:
Progetto Horizon 2020 LITMUS grant agreement n. 777377 prof.ssa BUGIANESI
  • Aree Di Ricerca

Aree Di Ricerca

Settori (17)


LS7_14 - Digital medicine, e-medicine, medical applications of artificial intelligence - (2024)

LS7_2 - Medical technologies and tools (including genetic tools and biomarkers) for prevention, diagnosis, monitoring and treatment of diseases - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Patologia e malattie degli animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Scienze cliniche veterinarie

MEDICINA, SALUTE e BENESSERE - Diagnostica e Imaging

MEDICINA, SALUTE e BENESSERE - Disturbi neuropsichiatrici

MEDICINA, SALUTE e BENESSERE - Epidemiologia

MEDICINA, SALUTE e BENESSERE - Malattie neurologiche e neurodegenerative

MEDICINA, SALUTE e BENESSERE - Medicina Rigenerativa e Cellule Staminali

MEDICINA, SALUTE e BENESSERE - Oncologia e Tumori

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

MEDICINA, SALUTE e BENESSERE - Trapianti e medicina rigenerativa

SCIENZE DELLA VITA e FARMACOLOGIA - Basi molecolari e cellulari delle patologie

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Molecole bioattive

SCIENZE DELLA VITA e FARMACOLOGIA - Sviluppo del sistema nervoso e plasticità
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0