Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Transformer-based spatial-temporal detection of apoptotic cell death in live-cell imaging

Articolo
Data di Pubblicazione:
2024
Abstract:
Intravital microscopy has revolutionized live-cell imaging by allowing the study of spatial-temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial-temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial-temporal regulation of this process.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
cell culture; computational biology; immunology; inflammation; lymph node; mouse; spleen; systems biology
Elenco autori:
Pulfer, Alain; Pizzagalli, Diego Ulisse; Gagliardi, Paolo Armando; Hinderling, Lucien; Lopez, Paul; Zayats, Romaniya; Carrillo-Barberà, Pau; Antonello, Paola; Palomino-Segura, Miguel; Grädel, Benjamin; Nicolai, Mariaclaudia; Giusti, Alessandro; Thelen, Marcus; Gambardella, Luca Maria; Murooka, Thomas T; Pertz, Olivier; Krause, Rolf; Gonzalez, Santiago Fernandez
Autori di Ateneo:
GAGLIARDI Paolo Armando
Link alla scheda completa:
https://iris.unito.it/handle/2318/2036510
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2036510/1436558/2024%20Transformer-based%20spatial%BFtemporal%20detection%20of%20apoptotic%20cell%20death%20in%20live-cell%20imaging.pdf
Pubblicato in:
ELIFE
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (9)


LS3_2 - Cell senescence, cell death, autophagy, cell ageing - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Allevamento e Produzioni Animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Patologia e malattie degli animali

MEDICINA, SALUTE e BENESSERE - Epidemiologia

MEDICINA, SALUTE e BENESSERE - Oncologia e Tumori

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

MEDICINA, SALUTE e BENESSERE - Trapianti e medicina rigenerativa

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0