Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

COVID-19 Infection Percentage Estimation from Computed Tomography Scans: Results and Insights from the International Per-COVID-19 Challenge

Articolo
Data di Pubblicazione:
2024
Abstract:
COVID-19 analysis from medical imaging is an important task that has been intensively studied in the last years due to the spread of the COVID-19 pandemic. In fact, medical imaging has often been used as a complementary or main tool to recognize the infected persons. On the other hand, medical imaging has the ability to provide more details about COVID-19 infection, including its severity and spread, which makes it possible to evaluate the infection and follow-up the patient’s state. CT scans are the most informative tool for COVID-19 infection, where the evaluation of COVID-19 infection is usually performed through infection segmentation. However, segmentation is a tedious task that requires much effort and time from expert radiologists. To deal with this limitation, an efficient framework for estimating COVID-19 infection as a regression task is proposed. The goal of the Per-COVID-19 challenge is to test the efficiency of modern deep learning methods on COVID-19 infection percentage estimation (CIPE) from CT scans. Participants had to develop an efficient deep learning approach that can learn from noisy data. In addition, participants had to cope with many challenges, including those related to COVID-19 infection complexity and crossdataset scenarios. This paper provides an overview of the COVID-19 infection percentage estimation challenge (Per-COVID-19) held at MIA-COVID-2022. Details of the competition data, challenges, and evaluation metrics are presented. The best performing approaches and their results are described and discussed.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
convolutional neural network; COVID-19; deep learning; estimation; Per-COVID-19; segmentation; transformer
Elenco autori:
Bougourzi F.; Distante C.; Dornaika F.; Taleb-Ahmed A.; Hadid A.; Chaudhary S.; Yang W.; Qiang Y.; Anwar T.; Breaban M.E.; Hsu C.-C.; Tai S.-C.; Chen S.-N.; Tricarico D.; Chaudhry H.A.H.; Fiandrotti A.; Grangetto M.; Spatafora M.A.N.; Ortis A.; Battiato S.
Autori di Ateneo:
FIANDROTTI Attilio
GRANGETTO Marco
Link alla scheda completa:
https://iris.unito.it/handle/2318/2037866
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2037866/1440586/COVID-19%20Infection%20Percentage%20Estimation%20from%20CT-Scans%20PRLETTERS-D-23-00687.pdf
Pubblicato in:
SENSORS
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (12)


PE6_7 - Artificial intelligence, intelligent systems, natural language processing - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Anglistica e angloamericanistica

LINGUE e LETTERATURA - Francesistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Fisica delle Particelle e dei Nuclei

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Laboratori innovativi, strumentazione e modellizzazione fisica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0