Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

A martingale approach to Gaussian fluctuations and laws of iterated logarithm for Ewens-Pitman model

Articolo
Data di Pubblicazione:
2024
Abstract:
The Ewens-Pitman model refers to a distribution for random partitions of $[n]=\{1,\ldots,n\}$, which is indexed by a pair of parameters $\alpha \in [0,1)$ and $\theta>-\alpha$, with $\alpha=0$ corresponding to the Ewens model in population genetics. The large $n$ asymptotic properties of the Ewens-Pitman model have been the subject of numerous studies, with the focus being on the number $K_{n}$ of partition sets and \textcolor{blue}{the number $K_{r,n}$ of partition subsets of size $r$}, for $r=1,\ldots,n$. While for $\alpha=0$ asymptotic results have been obtained in terms of almost-sure convergence and Gaussian fluctuations, for $\alpha\in(0,1)$ only almost-sure convergences are available, with the proof for $K_{r,n}$ being given only as a sketch. In this paper, we make use of martingales to develop a unified and comprehensive treatment of the large $n$ asymptotic behaviours of $K_{n}$ and $K_{r,n}$ for $\alpha\in(0,1)$, providing alternative, and rigorous, proofs of the almost-sure convergences of $K_{n}$ and $K_{r,n}$, and covering the gap of Gaussian fluctuations. We also obtain new laws of the iterated logarithm for $K_{n}$ and $K_{r,n}$.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Almost-sure limit, Ewens-Pitman model, exchangeable random partition, Gaussian fluctuation, law of iterated logarithm, martingale, Mittag-Leffler distribution
Elenco autori:
Bernard Bercu; Stefano Favaro
Autori di Ateneo:
FAVARO Stefano
Link alla scheda completa:
https://iris.unito.it/handle/2318/2042250
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2042250/1463378/BF_LGL_SPA_revised.pdf
Pubblicato in:
STOCHASTIC PROCESSES AND THEIR APPLICATIONS
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (3)


PE1_13 - Probability - (2024)

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Probabilità e Statistica

SOCIETA', POLITICA, DIRITTO e RELAZIONI INTERNAZIONALI - Statistica Applicata e Sociale
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.0.1