Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Data Augmentation for Low-Resource Italian NLP: Enhancing Semantic Processing with DRS

Contributo in Atti di convegno
Data di Pubblicazione:
2024
Abstract:
Discourse Representation Structure (DRS), a formal meaning representation, has shown promising results in semantic parsing and natural language generation tasks for high-resource languages like English. This paper investigates enhancing the application of DRS to low-resource Italian Natural Language Processing (NLP), in both semantic parsing (Text-to-DRS) and natural language generation (DRS-to-Text). To address the scarcity of annotated corpora for Italian DRS, we propose a novel data augmentation technique that involves the use of external linguistic resources including: (i) WordNet for common nouns, adjectives, adverbs, and verbs; (ii) LLM-generated named entities for proper nouns; and (iii) rule-based algorithms for tense augmentation. This approach not only increases the quantity of training data but also introduces linguistic diversity, which is crucial for improving model performance and robustness. Using this augmented dataset, we developed neural semantic parser and generator models that demonstrated enhanced generalization ability compared to models trained on non-augmented data. We evaluated the effect of semantic data augmentation using two state-of-the-art transformer-based neural sequence-to-sequence models, i.e., byT5 and IT5. Our implementation shows promising results for Italian semantic processing. Data augmentation significantly increased the performance of semantic parsing from 76.10 to 90.56 (+14.46%) F1-SMATCH score and generation with 37.79 to 57.48 (+19.69%) BLEU, 30.83 to 40.95 (+10.12%) METEOR, 81.66 to 90.97 (+9.31%) COMET, 54.84 to 70.88 (+16.04%) chrF, and 88.86 to 92.97 (+4.11%) BERT scores. These results demonstrate the effectiveness of our novel augmentation approach in enhancing semantic processing capabilities for low-resource languages like Italian.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
Data augmentation, Italian semantic processing, low-resource NLP, semantic parsing and generation
Elenco autori:
Muhammad Saad Amin; Luca Anselma; Alessandro Mazzei
Autori di Ateneo:
ANSELMA Luca
MAZZEI Alessandro
Link alla scheda completa:
https://iris.unito.it/handle/2318/2045250
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2045250/1478658/5_main_long.pdf
Titolo del libro:
Proceedings of the Tenth Italian Conference on Computational Linguistics (CLiC-it 2024)
Pubblicato in:
CEUR WORKSHOP PROCEEDINGS
Journal
CEUR WORKSHOP PROCEEDINGS
Series
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://ceur-ws.org/Vol-3878/5_main_long.pdf

Aree Di Ricerca

Settori (12)


PE6_7 - Artificial intelligence, intelligent systems, natural language processing - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Anglistica e angloamericanistica

LINGUE e LETTERATURA - Francesistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Fisica delle Particelle e dei Nuclei

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Laboratori innovativi, strumentazione e modellizzazione fisica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.3.0