Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Persone

Filtering coupled Wright–Fisher diffusions

Articolo
Data di Pubblicazione:
2024
Abstract:
Coupled Wright–Fisher diffusions have been recently introduced to model the tempo- ral evolution of finitely-many allele frequencies at several loci. These are vectors of multidimensional diffusions whose dynamics are weakly coupled among loci through interaction coefficients, which make the reproductive rates for each allele depend on its frequencies at several loci. Here we consider the problem of filtering a coupled Wright–Fisher diffusion with parent-independent mutation, when this is seen as an unobserved signal in a hidden Markov model. We assume individuals are sampled multinomially at discrete times from the underlying population, whose type config- uration at the loci is described by the diffusion states, and adapt recently introduced duality methods to derive the filtering and smoothing distributions. These respectively provide the conditional distribution of the diffusion states given past data, and that con- ditional on the entire dataset, and are key to be able to perform parameter inference on models of this type. We show that for this model these distributions are countable mixtures of tilted products of Dirichlet kernels, and describe their mixing weights and how these can be updated sequentially. The evaluation of the weights involves the transition probabilities of the dual process, which are not available in closed form. We lay out pseudo codes for the implementation of the algorithms, discuss how to handle the unavailable quantities, and briefly illustrate the procedure with synthetic data.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
Boetti, Chiara; Ruggiero, Matteo
Autori di Ateneo:
RUGGIERO Matteo
Link alla scheda completa:
https://iris.unito.it/handle/2318/2048210
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2048210/1493798/2410.11429v1.pdf
Pubblicato in:
JOURNAL OF MATHEMATICAL BIOLOGY
Journal
Progetto:
Measuring Biodiversity via Bayesian Nonparametrics: Estimation, Clustering and Uncertainty Quantification - Finanziamento dell’Unione Europea – NextGenerationEU – missione 4, componente 2, investimento 1.1.
  • Aree Di Ricerca

Aree Di Ricerca

Settori (4)


PE1_14 - Mathematical statistics - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Probabilità e Statistica

SOCIETA', POLITICA, DIRITTO e RELAZIONI INTERNAZIONALI - Statistica Applicata e Sociale
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0