Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

An R Package for Nonparametric Inference on Dynamic Populations with Infinitely Many Types

Articolo
Data di Pubblicazione:
2024
Abstract:
Fleming–Viot diffusions are widely used stochastic models for population dynamics that extend the celebrated Wright–Fisher diffusions. They describe the temporal evolution of the relative frequencies of the allelic types in an ideally infinite panmictic population, whose individuals undergo random genetic drift and at birth can mutate to a new allelic type drawn from a possibly infinite potential pool, independently of their parent. Recently, Bayesian nonparametric inference has been considered for this model when a finite sample of individuals is drawn from the population at several discrete time points. Previous works have fully described the relevant estimators for this problem, but current software is available only for the Wright–Fisher finite-dimensional case. Here, we provide software for the general case, overcoming some nontrivial computational challenges posed by this setting. The R package FVDDPpkg efficiently approximates the filtering and smoothing distribution for Fleming–Viot diffusions, given finite samples of individuals collected at different times. A suitable Monte Carlo approximation is also introduced in order to reduce the computational cost.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
Ascolani, Filippo; Damato, Stefano; Ruggiero, Matteo
Autori di Ateneo:
RUGGIERO Matteo
Link alla scheda completa:
https://iris.unito.it/handle/2318/2048230
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2048230/1493818/2409.15539v1.pdf
Pubblicato in:
JOURNAL OF COMPUTATIONAL BIOLOGY
Journal
Progetto:
Measuring Biodiversity via Bayesian Nonparametrics: Estimation, Clustering and Uncertainty Quantification - Finanziamento dell’Unione Europea – NextGenerationEU – missione 4, componente 2, investimento 1.1.
  • Aree Di Ricerca

Aree Di Ricerca

Settori


PE1_15 - Generic statistical methodology and modelling - (2024)
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0