Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Differentially Private Associative Co-clustering

Contributo in Atti di convegno
Data di Pubblicazione:
2025
Abstract:
Co-clustering is a useful tool that extracts summary information from a data matrix in terms of row and column clusters, and gives a succinct representation of the data. However, if the matrix contains data about individuals, such representations could leak their privacy-sensitive information. In terms of privacy disclosure, co-clustering is even more harmful than clustering, because of the additional information carried by the column partition. However, to the best of our knowledge, the problem of privacy-preserving co-clustering has never been studied. To fill this gap, we consider a recent co-clustering algorithm, based on a de-normalized version of the Goodman-Kruskal’s τ association measure, which has a good property from a differential privacy perspective, and is supposed not to consume an excessive amount of privacy budget. This leads to a privacy-preserving co-clustering algorithm that satisfies the definition of differential privacy while providing good partitioning solutions. Our algorithm is based on a prototype-based optimization strategy that makes it fast and actionable in realistic privacy-preserving data management and analysis scenarios, as shown by our extensive experimental validation.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
clustering, privacy, unsupervised learning, high-dimensional data
Elenco autori:
Battaglia, Elena; Pensa, Ruggero G.
Autori di Ateneo:
PENSA Ruggero Gaetano
Link alla scheda completa:
https://iris.unito.it/handle/2318/2071490
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2071490/1872440/sdm2025_author.pdf
Titolo del libro:
Proceedings of the 2025 SIAM International Conference on Data Mining (SDM)
Progetto:
Finanziamento UE – NextGenerationEU PRIN PNRR 2022 - Project "PADS4Health - Privacy-Aware Data Sharing model for Health data" PNRR M4C2 investimento 1.1 Avviso 14/09/22
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://epubs.siam.org/doi/10.1137/1.9781611978520.22

Aree Di Ricerca

Settori (13)


PE6_11 - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) - (2024)

PE6_5 - Security, privacy, cryptology, quantum cryptography - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Linguistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Tecnologie Farmaceutiche e Cosmetiche

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Teorie e modelli Matematici
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0