Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

A sustainable deep learning framework for object recognition using multi-layers deep features fusion and selection

Articolo
Data di Pubblicazione:
2020
Abstract:
With an overwhelming increase in the demand of autonomous systems, especially in the applications related to intelligent robotics and visual surveillance, come stringent accuracy requirements for complex object recognition. A system that maintains its performance against a change in the object's nature is said to be sustainable and it has become a major area of research for the computer vision research community in the past few years. In this work, we present a sustainable deep learning architecture, which utilizes multi-layer deep features fusion and selection, for accurate object classification. The proposed approach comprises three steps: (1) By utilizing two deep learning architectures, Very Deep Convolutional Networks for Large-Scale Image Recognition and Inception V3, it extracts features based on transfer learning, (2) Fusion of all the extracted feature vectors is performed by means of a parallel maximum covariance approach, and (3) The best features are selected using Multi Logistic Regression controlled Entropy-Variances method. For verification of the robust selected features, the Ensemble Learning method named Subspace Discriminant Analysis is utilized as a fitness function. The experimental process is conducted using four publicly available datasets, including Caltech-101, Birds database, Butterflies database and CIFAR-100, and a ten-fold validation process which yields the best accuracies of 95.5%, 100%, 98%, and 68.80% for the datasets respectively. Based on the detailed statistical analysis and comparison with the existing methods, the proposed selection method gives significantly more accuracy. Moreover, the computational time of the proposed selection method is better for real-time implementation.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Deep learning; Features fusion; Features selection; Object classification; Recognition
Elenco autori:
Rashid M.; Khan M.A.; Alhaisoni M.; Wang S.-H.; Naqvi S.R.; Rehman A.; Saba T.
Link alla scheda completa:
https://iris.unito.it/handle/2318/2078351
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2078351/1893686/A-sustainable-deep-learning-framework-for-object-recognition-using-multilayers-deep-features-fusion-and-selectionSustainability-Switzerland%20(1).pdf
Pubblicato in:
SUSTAINABILITY
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (12)


PE6_11 - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Linguistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Tecnologie Farmaceutiche e Cosmetiche

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Teorie e modelli Matematici
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0