Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

3D Model Artificial Intelligence-Guided Automatic Augmented Reality Images during Robotic Partial Nephrectomy

Altro Prodotto di Ricerca
Data di Pubblicazione:
2023
Abstract:
More than ever, precision surgery is making its way into modern surgery for functional organ preservation. This is possible mainly due to the increasing number of technologies available, including 3D models, virtual reality, augmented reality, and artificial intelligence. Intraoperative surgical navigation represents an interesting application of these technologies, allowing to understand in detail the surgical anatomy, planning a patient-tailored approach. Automatic superimposition comes into this context to optimally perform surgery as accurately as possible. Through a dedicated software (the first version) called iKidney, it is possible to superimpose the images using 3D models and live endoscopic images during partial nephrectomy, targeting the renal mass only. The patient is 31 years old with a 28 mm totally endophytic right-sided renal mass, with a PADUA score of 9. Thanks to the automatic superimposition and selective clamping, an enucleoresection of the renal mass alone was performed with no major postoperative complication (i.e., Clavien–Dindo < 2). iKidney-guided partial nephrectomy is safe, feasible, and yields excellent results in terms of organ preservation and functional outcomes. Further validation studies are needed to improve the prototype software, particularly to improve the rotational axes and avoid human help. Furthermore, it is important to reduce the costs associated with these technologies to increase its use in smaller hospitals.
Tipologia CRIS:
07Z-Altro
Keywords:
3D models; artificial intelligence; augmented reality; kidney cancer; robotics
Elenco autori:
Sica, Michele; Piazzolla, Pietro; Amparore, Daniele; Verri, Paolo; De Cillis, Sabrina; Piramide, Federico; Volpi, Gabriele; Piana, Alberto; Di Dio, Michele; Alba, Stefano; Gatti, Cecilia; Burgio, Mariano; Busacca, Giovanni; Giordano, Angelo; Fiori, Cristian; Porpiglia, Francesco; Checcucci, Enrico
Autori di Ateneo:
AMPARORE Daniele
DE CILLIS Sabrina Titti
FIORI Cristian
PORPIGLIA Francesco
Link alla scheda completa:
https://iris.unito.it/handle/2318/2079105
Pubblicato in:
DIAGNOSTICS
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (14)


LS7_14 - Digital medicine, e-medicine, medical applications of artificial intelligence - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Patologia e malattie degli animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Scienze cliniche veterinarie

MEDICINA, SALUTE e BENESSERE - Disturbi neuropsichiatrici

MEDICINA, SALUTE e BENESSERE - Epidemiologia

MEDICINA, SALUTE e BENESSERE - Malattie neurologiche e neurodegenerative

MEDICINA, SALUTE e BENESSERE - Medicina Rigenerativa e Cellule Staminali

MEDICINA, SALUTE e BENESSERE - Oncologia e Tumori

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

MEDICINA, SALUTE e BENESSERE - Trapianti e medicina rigenerativa

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Molecole bioattive

SCIENZE DELLA VITA e FARMACOLOGIA - Sviluppo del sistema nervoso e plasticitĂ 
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0