Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Artificial Intelligence in Renal Cell Carcinoma Histopathology: Current Applications and Future Perspectives

Articolo
Data di Pubblicazione:
2023
Abstract:
Renal cell carcinoma (RCC) is characterized by its diverse histopathological features, which pose possible challenges to accurate diagnosis and prognosis. A comprehensive literature review was conducted to explore recent advancements in the field of artificial intelligence (AI) in RCC pathology. The aim of this paper is to assess whether these advancements hold promise in improving the precision, efficiency, and objectivity of histopathological analysis for RCC, while also reducing costs and interobserver variability and potentially alleviating the labor and time burden experienced by pathologists. The reviewed AI-powered approaches demonstrate effective identification and classification abilities regarding several histopathological features associated with RCC, facilitating accurate diagnosis, grading, and prognosis prediction and enabling precise and reliable assessments. Nevertheless, implementing AI in renal cell carcinoma generates challenges concerning standardization, generalizability, benchmarking performance, and integration of data into clinical workflows. Developing methodologies that enable pathologists to interpret AI decisions accurately is imperative. Moreover, establishing more robust and standardized validation workflows is crucial to instill confidence in AI-powered systems’ outcomes. These efforts are vital for advancing current state-of-the-art practices and enhancing patient care in the future.
Tipologia CRIS:
03B-Review in Rivista / Rassegna della Lett. in Riv. / Nota Critica
Keywords:
artificial intelligence; kidney cancer; pathology; renal cell carcinoma
Elenco autori:
Distante, Alfredo; Marandino, Laura; Bertolo, Riccardo; Ingels, Alexandre; Pavan, Nicola; Pecoraro, Angela; Marchioni, Michele; Carbonara, Umberto; Erdem, Selcuk; Amparore, Daniele; Campi, Riccardo; Roussel, Eduard; Caliò, Anna; Wu, Zhenjie; Palumbo, Carlotta; Borregales, Leonardo D; Mulders, Peter; Muselaers, Constantijn H J
Autori di Ateneo:
AMPARORE Daniele
Link alla scheda completa:
https://iris.unito.it/handle/2318/2079330
Pubblicato in:
DIAGNOSTICS
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (14)


LS7_14 - Digital medicine, e-medicine, medical applications of artificial intelligence - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Patologia e malattie degli animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Scienze cliniche veterinarie

MEDICINA, SALUTE e BENESSERE - Disturbi neuropsichiatrici

MEDICINA, SALUTE e BENESSERE - Epidemiologia

MEDICINA, SALUTE e BENESSERE - Malattie neurologiche e neurodegenerative

MEDICINA, SALUTE e BENESSERE - Medicina Rigenerativa e Cellule Staminali

MEDICINA, SALUTE e BENESSERE - Oncologia e Tumori

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

MEDICINA, SALUTE e BENESSERE - Trapianti e medicina rigenerativa

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Molecole bioattive

SCIENZE DELLA VITA e FARMACOLOGIA - Sviluppo del sistema nervoso e plasticità
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0