Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Progetti

CASTLE - Chirality and spin selectivity in electron transfer processes: from quantum detection to quantum enabled technologies

Progetto
Chirality is a key property of molecules important in many chemical and nearly all biological processes. Recent observations have shown that electron transport through chiral molecules attached to solid electrodes can induce high spin polarization even at room temperature. Electrons with their spin aligned parallel or antiparallel to the electron transfer displacement vector are preferentially transmitted depending on the chirality of the molecular system resulting in Chirality-Induced Spin Selectivity (CISS). The long-term vision of the CASTLE project is to transform the CISS effect into an enabling technology for quantum applications. This will be accomplished by achieving four key objectives. 1) The occurrence of CISS will be studied at the intramolecular level by photo-inducing rapid electron transfer within covalent donor-chiral spacer-acceptor molecules to generate long-lived radical pairs (RPs). 2) Direct detection of RP spin polarization will be performed using time-resolved and pulsed electron and nuclear magnetic resonance techniques. In addition, polarization transfer from one of the radicals comprising the spin-polarized RP to a stable molecular spin (Q) will be used to initialize the quantum state of Q, making it a good qubit for quantum applications, particularly sensing. 3) Quantum mechanical studies of the CISS effect will provide predictive models for molecular qubit design. 4) The CISS effect will be used to control, readout, and transfer information in prototypical devices embedding hybrid interfaces based on semiconducting or conducting substrates, thus dramatically advancing the use of molecular spins in quantum information technologies targeting high-temperature operation. These devices will be used also to prove molecule-based Quantum Error Correction. The knowledge acquired with CASTLE will impact a wide range of fields, including magnetless spintronics, dynamic nuclear polarization for NMR signal enhancement, catalysis, and light harvesting.
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

Partecipanti

CHIESA Mario   Responsabile scientifico  

Referenti (2)

LO IACONO Cristiano   Amministrativo  
ROCHAS Fabio   Amministrativo  

Dipartimenti coinvolti

CHIMICA   Principale  

Tipo

HEU ERC - European Research Council Synergy Grants

Finanziatore

EUROPEAN COMMISSION
Ente Finanziatore

Partner

Università degli Studi di TORINO

Contributo Totale (assegnato) Ateneo (EURO)

170.406,25€

Periodo di attività

Gennaio 1, 2023 - Dicembre 31, 2028

Durata progetto

73 mesi

Aree Di Ricerca

Settori (9)


PE3_11 - Mesoscopic quantum physics and solid-state quantum technologies - (2022)

PE4_15 - Photochemistry - (2022)

PE4_2 - Spectroscopic and spectrometric techniques - (2022)

PE5_6 - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles - (2022)

Settore CHIM/03 - Chimica Generale e Inorganica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Chimica e Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Energia e Fonti Energetiche

SCIENZE DELLA VITA e FARMACOLOGIA - Farmacologia, Biochimica e Biologia Molecolare

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Materiali Avanzati

Parole chiave (3)

New materials
Photochemistry
spectroscopic and spectrometric techniques
No Results Found
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.0.1