Data di Pubblicazione:
2013
Abstract:
Results on two-particle angular correlations for charged particles emitted in pPb collisions at a nucleon–
nucleon center-of-mass energy of 5.02 TeV are presented. The analysis uses two million collisions
collected with the CMS detector at the LHC. The correlations are studied over a broad range of
pseudorapidity, η, and full azimuth, φ, as a function of charged particle multiplicity and particle
transverse momentum, pT. In high-multiplicity events, a long-range (2 < |η| < 4), near-side (φ ≈ 0)
structure emerges in the two-particle η–φ correlation functions. This is the first observation of
such correlations in proton–nucleus collisions, resembling the ridge-like correlations seen in highmultiplicity
pp collisions at √s = 7 TeV and in AA collisions over a broad range of center-of-mass
energies. The correlation strength exhibits a pronounced maximum in the range of pT = 1–1.5 GeV/c
and an approximately linear increase with charged particle multiplicity for high-multiplicity events. These
observations are qualitatively similar to those in pp collisions when selecting the same observed particle
multiplicity, while the overall strength of the correlations is significantly larger in pPb collisions.
© 2012 CERN. Published by Elsevier B.V.
1. Introduction
This Letter presents measurements of two-particle angular correlations
in proton-lead (pPb) collisions at a nucleon–nucleon
center-of-mass energy √sN N = 5.02 TeV, performed with the Compact
Muon Solenoid (CMS) detector at the Large Hadron Collider
(LHC). Two-particle correlations in high-energy collisions provide
valuable information for characterizing Quantum Chromodynamics
and have been studied previously for a broad range of collision
energies in proton–proton (pp), proton–nucleus (pA), and nucleus–
nucleus (AA) collisions. Such measurements can elucidate the underlying
mechanism of particle production and possible collective
effects resulting from the high particle densities accessible in these
collisions.
Studies of two-particle angular correlations are typically performed
using two-dimensional η–φ correlation functions,
where φ is the difference in azimuthal angle φ between the
two particles and η is the difference in pseudorapidity η =
−ln(tan(θ/2)). The polar angle θ is defined relative to the counterclockwise
beam.
Of particular interest in studies of collective effects is the longrange
(large |η|) structure of two-particle correlation functions,
which is less susceptible to known sources of correlations such
E-mail address: cms-publication-committee-chair@cern.ch.
as resonance decays and fragmentation of energetic jets. Measurements
in high-energy AA collisions have shown significant modifications
of the long-range structure compared with minimum
bias pp collisions [1]. Novel correlation structures extending over
large η at |φ| ≈ 0 and |φ| ≈ 2π/3 were observed in azimuthal
correlations for intermediate particle transverse momenta,
pT ≈ 1–5 GeV/c [2–10]. In AA collisions, long-range correlations
are interpreted as a consequence of the hydrodynamic flow of
the produced strongly interacting medium [11] and are usually
characterized by the Fourier components of the azimuthal particle
distributions [12]. Of particular importance are the second and
third Fourier components, called elliptic and triangular flow, as
they most directly reflect the medium response to the initial collision
geometry and its fluctuations [13], and allow the study of
fundamental transport properties of the medium using hydrodynamic
models [14–16].
In current pp and pA Monte Carlo (MC) event generators, the
dominant sources of such long-range correlations are momentum
conservation and away-sid
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
S. Chatrchyan;V. Khachatryan;A.M. Sirunyan;A. Tumasyan;W. Adam;E. Aguilo;T. Bergauer;M. Dragicevic;J. Erö;C. Fabjan;M. Friedl;R. Frühwirth;V.M. Ghete;N. Hörmann;J. Hrubec;M. Jeitler;W. Kiesenhofer;V. Knünz;M. Krammer;I. Krätschmer;D. Liko;I. Mikulec;M. Pernicka;D. Rabady;B. Rahbaran;C. Rohringer;H. Rohringer;R. Schöfbeck;J. Strauss;A. Taurok;W. Waltenberger;C.-E. Wulz;V. Mossolov;N. Shumeiko;J. Suarez Gonzalez;M. Bansal;S. Bansal;T. Cornelis;E.A. De Wolf;X. Janssen;S. Luyckx;L. Mucibello;S. Ochesanu;B. Roland;R. Rougny;M. Selvaggi;H. Van Haevermaet;P. Van Mechelen;N. Van Remortel;A. Van Spilbeeck;F. Blekman;S. Blyweert;J. DʼHondt;R. Gonzalez Suarez;A. Kalogeropoulos;M. Maes;A. Olbrechts;W. Van Doninck;P. Van Mulders;G.P. Van Onsem;I. Villella;B. Clerbaux;G. De Lentdecker;V. Dero;A.P.R. Gay;T. Hreus;A. Léonard;P.E. Marage;A. Mohammadi;T. Reis;L. Thomas;C. Vander Velde;P. Vanlaer;J. Wang;V. Adler;K. Beernaert;A. Cimmino;S. Costantini;G. Garcia;M. Grunewald;B. Klein;J. Lellouch;A. Marinov;J. Mccartin;A.A. Ocampo Rios;D. Ryckbosch;M. Sigamani;N. Strobbe;F. Thyssen;M. Tytgat;S. Walsh;E. Yazgan;N. Zaganidis;S. Basegmez;G. Bruno;R. Castello;L. Ceard;C. Delaere;T. du Pree;D. Favart;L. Forthomme;A. Giammanco;J. Hollar;V. Lemaitre;J. Liao;O. Militaru;C. Nuttens;D. Pagano;A. Pin;K. Piotrzkowski;J.M. Vizan Garcia;N. Beliy;T. Caebergs;E. Daubie;G.H. Hammad;G.A. Alves;M. Correa Martins;T. Martins;M.E. Pol;M.H.G. Souza;W.L. Aldá;W. Carvalho;A. Custódio;E.M. Da Costa;D. De Jesus Damiao;C. De Oliveira Martins;S. Fonseca De Souza;H. Malbouisson;M. Malek;D. Matos Figueiredo;L. Mundim;H. Nogima;W.L. Prado Da Silva;A. Santoro;L. Soares Jorge;A. Sznajder;A. Vilela Pereira;T.S. Anjos;C.A. Bernardes;F.A. Dias;T.R. Fernandez Perez Tomei;E.M. Gregores;C. Lagana;F. Marinho;P.G. Mercadante;S.F. Novaes;Sandra S. Padula;V. Genchev;P. Iaydjiev;S. Piperov;M. Rodozov;S. Stoykova;G. Sultanov;V. Tcholakov;R. Trayanov;M. Vutova;A. Dimitrov;R. Hadjiiska;V. Kozhuharov;L. Litov;B. Pavlov;P. Petkov;J.G. Bian;G.M. Chen;H.S. Chen;C.H. Jiang;D. Liang;S. Liang;X. Meng;J. Tao;J. Wang;X. Wang;Z. Wang;H. Xiao;M. Xu;J. Zang;Z. Zhang;C. Asawatangtrakuldee;Y. Ban;Y. Guo;W. Li;S. Liu;Y. Mao;S.J. Qian;H. Teng;D. Wang;L. Zhang;W. Zou;C. Avila;C.A. Carrillo Montoya;J.P. Gomez;B. Gomez Moreno;A.F. Osorio Oliveros;J.C. Sanabria;N. Godinovic;D. Lelas;R. Plestina;D. Polic;I. Puljak;Z. Antunovic;M. Kovac;V. Brigljevic;S. Duric;K. Kadija;J. Luetic;D. Mekterovic;S. Morovic;A. Attikis;M. Galanti;G. Mavromanolakis;J. Mousa;C. Nicolaou;F. Ptochos;P.A. Razis;M. Finger;M. Finger;Y. Assran;S. Elgammal;A. Ellithi Kamel;M.A. Mahmoud;A. Mahrous;A. Radi;M. Kadastik;M. Müntel;M. Murumaa;M. Raidal;L. Rebane;A. Tiko;P. Eerola;G. Fedi;M. Voutilainen;J. Härkönen;A. Heikkinen;V. Karimäki;R. Kinnunen;M.J. Kortelainen;T. Lampén;K. Lassila-Perini;S. Lehti;T. Lindén;P. Luukka;T. Mäenpää;T. Peltola;E. Tuominen;J. Tuominiemi;E. Tuovinen;D. Ungaro;L. Wendland;K. Banzuzi;A. Karjalainen;A. Korpela;T. Tuuva;M. Besancon;S. Choudhury;M. Dejardin;D. Denegri;B. Fabbro;J.L. Faure;F. Ferri;S. Ganjour;A. Givernaud;P. Gras;G. Hamel de Monchenault;P. Jarry;E. Locci;J. Malcles;L. Millischer;A. Nayak;J. Rander;A. Rosowsky;M. Titov;S. Baffioni;F. Beaudette;L. Benhabib;L. Bianchini;M. Bluj;P. Busson;C. Charlot;N. Daci;T. Dahms;M. Dalchenko;L. Dobrzynski;A. Florent;R. Granier de Cassagnac;M. Haguenauer;P. Miné;C. Mironov;I.N. Naranjo;M. Nguyen;C. Ochando;P. Paganini;D. Sabes;R. Salerno;Y. Sirois;C. Veelken;A. Zabi;J.-L. Agram;J. Andrea;D. Bloch;D. Bodin;J.-M. Brom;M. Cardaci;E.C. Chabert;C. Collard;E. Conte;F. Drouhin;J.-C. Fontaine;D. Gelé;U. Goerlach;P. Juillot;A.-C. Le
Link alla scheda completa:
Link al Full Text:
Pubblicato in: