A Deep Learning Approach to Anomaly Detection in the Gaia Space Mission Data
Contributo in Atti di convegno
Data di Pubblicazione:
2019
Abstract:
The data reduction system of the Gaia space mission generates a large amount of intermediate data and plots for diagnostics, beyond practical possibility of full human evaluation. We investigate the feasibility of adoption of deep learning tools for automatic detection of data anomalies, focusing on convolutional neural networks and comparing with a multilayer perceptron. The results evidence very good accuracy (∼99.7%) in the classification of the selected anomalies.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
Astronomical data; Big data; Deep learning; Diagnostics
Elenco autori:
Druetto A.; Roberti M.; Cancelliere R.; Cavagnino D.; Gai M.
Link alla scheda completa:
Link al Full Text:
Titolo del libro:
Lecture Notes in Computer Science, Advances in Computational Intelligence
Pubblicato in: