Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

A Deep Learning Approach to Anomaly Detection in the Gaia Space Mission Data

Contributo in Atti di convegno
Data di Pubblicazione:
2019
Abstract:
The data reduction system of the Gaia space mission generates a large amount of intermediate data and plots for diagnostics, beyond practical possibility of full human evaluation. We investigate the feasibility of adoption of deep learning tools for automatic detection of data anomalies, focusing on convolutional neural networks and comparing with a multilayer perceptron. The results evidence very good accuracy (∼99.7%) in the classification of the selected anomalies.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
Astronomical data; Big data; Deep learning; Diagnostics
Elenco autori:
Druetto A.; Roberti M.; Cancelliere R.; Cavagnino D.; Gai M.
Autori di Ateneo:
CANCELLIERE Rossella
CAVAGNINO Davide
DRUETTO ALESSANDRO
Link alla scheda completa:
https://iris.unito.it/handle/2318/1706809
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1706809/519528/IWANN2019.pdf
Titolo del libro:
Lecture Notes in Computer Science, Advances in Computational Intelligence
Pubblicato in:
LECTURE NOTES IN COMPUTER SCIENCE
Journal
LECTURE NOTES IN COMPUTER SCIENCE
Series
  • Dati Generali

Dati Generali

URL

https://www.springer.com/series/558
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0