Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

An SVM-Based Scheme for Automatic Identification of Architectural Line Features and Cracks

Articolo
Data di Pubblicazione:
2020
Abstract:
This research investigates fundamental problems in object recognition in earthen heritage and addresses the possibility of an automatic crack detection method for rammed earth images. We propose and validate a straightforward support vector machine (SVM)-based bidirectional morphological approach to automatically generate crack and texture line maps through transforming a surface image into an intermediate representation. Rather than relying on the application of the eight connectivity rule to a combination of horizontal and vertical gradient to extract edges, we instruct an edge classifier in the form of a support vector machine from features computed on each direction separately. The model couples a bidirectional local gradient and geometrical characteristics. It constitutes of four elements: (1) bidirectional edge maps; (2) bidirectional equivalent connected component maps; (3) SVM-based classifier and (4) crack and architectural line feature map generation. Relevant details are discussed in each part. Finally, the efficiency of the proposed algorithm is verified in a set of simulations that is satisfactorily conforming to labeled data provided manually for surface images of earthen heritage.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
earthen heritage; rammed earth; crack detection; connected component; morphological approach; machine learning; SVM
Elenco autori:
Gessica Umili; Vito Messina; Sabrina Bonetto; Anna Maria Ferrero; Zeighami Mahshid
Autori di Ateneo:
BONETTO Sabrina Maria Rita
FERRERO Anna Maria
MESSINA Vito
UMILI Gessica
Link alla scheda completa:
https://iris.unito.it/handle/2318/1744956
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1744956/626876/applsci-10-05077.pdf
Pubblicato in:
APPLIED SCIENCES
Journal
  • Dati Generali

Dati Generali

URL

https://www.mdpi.com/2076-3417/10/15/5077
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0