Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

A Performance Analysis for Confidential Federated Learning

Contributo in Atti di convegno
Data di Pubblicazione:
2024
Abstract:
Federated Learning (FL) has emerged as a solution to preserve data privacy by keeping the data locally on each participant’s device. However, FL alone is still vulnerable to attacks that can cause privacy leaks. Therefore, additional security measures, at the cost of increasing runtimes, become necessary. The Trusted Execution Environment (TEE) approach offers the highest degree of security during execution. However, TEEs suffer from memory limits which prevent safe end-to-end FL training of modern deep models. State-of-the-art approaches limit secure training to selected layers, failing to avert the full spectrum of attacks or adopt layer-wise training affecting model performance. We benchmark the usage of a library OS (LibOS) to run the full, unmodified end-to-end FL training inside the TEE. We extensively evaluate and model the overhead of the different security mechanisms needed to protect the data and model during computation (TEE), communication (TLS), and storage (disk encryption). The obtained results across three datasets and two models demonstrate that LibOSes are a viable way to seamlessly inject security into FL with limited overhead (at most 2x), offering valuable guidance for researchers and developers aiming to apply FL in data-security-focused contexts.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
federated learning, trusted execution environments, intel sgx, sgx, confidential computing
Elenco autori:
Bruno Casella, Iacopo Colonnelli, Gianluca Mittone, Robert Birke, Walter Riviera, Antonio Sciarappa, Carlo Cavazzoni, Marco Aldinucci
Autori di Ateneo:
ALDINUCCI Marco
BIRKE Robert Renè Maria
CASELLA BRUNO
COLONNELLI Iacopo
MITTONE GIANLUCA
Link alla scheda completa:
https://iris.unito.it/handle/2318/1961156
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1961156/1250376/DLSP___CONFIDENTIAL_FL.pdf
Titolo del libro:
2024 IEEE Security and Privacy Workshops (SPW)
Pubblicato in:
PROCEEDINGS IEEE SECURITY AND PRIVACY WORKSHOPS
Series
Progetto:
Future HPC & Big Data-finanziato con fondi PNRR MUR-M4C2-Investimento 1.4-Avviso"Centri Nazionali"-D.D.n.3138 del 16/12/2021 rettificato con DD n.3175 del 18/12/2021,codice MUR CN00000013, CUP D13C22001340001
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://ieeexplore.ieee.org/document/10579526

Aree Di Ricerca

Settori (14)


PE6_5 - Security, privacy, cryptology, quantum cryptography - (2022)

PE6_7 - Artificial intelligence, intelligent systems, natural language processing - (2022)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Anglistica e angloamericanistica

LINGUE e LETTERATURA - Francesistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Fisica delle Particelle e dei Nuclei

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Laboratori innovativi, strumentazione e modellizzazione fisica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0