Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Improving rule-based classifiers by Bayes point aggregation

Articolo
Data di Pubblicazione:
2024
Abstract:
The widespread adoption of artificial intelligence systems with continuously higher capabilities is causing ethical concerns. The lack of transparency, particularly for state-of-the-art models such as deep neural networks, hinders the applicability of such black-box methods in many domains, like the medical or the financial ones, where model transparency is a mandatory requirement, and hence white-box models are largely preferred over potentially more accurate but opaque techniques. For this reason, in this paper, we focus on ruleset learning, arguably the most interpretable class of learning techniques. Specifically, we propose Bayes Point Rule Classifier, an ensemble methodology inspired by the Bayes Point Machine, to improve the performance and robustness of rule-based classifiers. In addition, to improve interpretability, we propose a technique to retain the most relevant rules based on their importance, thus increasing the transparency of the ensemble, making it easier to understand its decision-making process. We also propose FIND-RS, a greedy ruleset learning algorithm that, under mild conditions, guarantees to learn hypothesis with perfect accuracy on the training set while preserving a good generalization capability to unseen data points. We performed extensive experimentation showing that FIND-RS achieves state-of-the-art classification performance at the cost of a slight increase in the ruleset complexity w.r.t. the competitors. However, when paired with the Bayes Point Rule Classifier, FIND-RS outperforms all the considered baselines.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
Bergamin, Luca; Polato, Mirko; Aiolli, Fabio
Autori di Ateneo:
POLATO Mirko
Link alla scheda completa:
https://iris.unito.it/handle/2318/2030685
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2030685/1415849/2025-neucom-polato.pdf
Pubblicato in:
NEUROCOMPUTING
Journal
Progetto:
Future HPC & Big Data-finanziato con fondi PNRR MUR-M4C2-Investimento 1.4-Avviso"Centri Nazionali"-D.D.n.3138 del 16/12/2021 rettificato con DD n.3175 del 18/12/2021,codice MUR CN00000013, CUP D13C22001340001
  • Aree Di Ricerca

Aree Di Ricerca

Settori (12)


PE6_11 - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Linguistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Tecnologie Farmaceutiche e Cosmetiche

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Teorie e modelli Matematici
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0