Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Braided Bialgebras of Hecke-type

Articolo
Data di Pubblicazione:
2009
Abstract:
The paper is devoted to prove a version of Milnor-Moore Theorem for connected braided bialgebras that are infinitesimally cocommutative. Namely in characteristic different from $2$, we prove that, for a given connected braided bialgebra $(A,\mathfrak{c}_A)$ which is infinitesimally $\lambda $-cocommutative for some element $\lambda \neq 0$ that is not a root of one in the base field, then the infinitesimal braiding of $A$ is of Hecke-type of mark $\lambda $ and $A$ is isomorphic as a braided bialgebra to the symmetric algebra of the braided subspace of its primitive elements.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Braided bialgebras; Braided enveloping algebras; Milnor–Moore Theorem
Elenco autori:
A. ARDIZZONI; C. MENINI C.; D. STEFAN
Autori di Ateneo:
ARDIZZONI Alessandro
Link alla scheda completa:
https://iris.unito.it/handle/2318/92400
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/92400/14196/BrBialgHeckeType-Copertina.pdf
Pubblicato in:
JOURNAL OF ALGEBRA
Journal
  • Dati Generali

Dati Generali

URL

http://dx.doi.org/10.1016/j.jalgebra.2008.11.011
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0