Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Selecting Most Adaptable Diagnostic Solutions through Pivoting-Based Retrieval

Articolo
Data di Pubblicazione:
1997
Abstract:
The aim of the present paper is to investigate a retrieval strategy for case-based diagnosis called Pivoting Based Retrieval (PBR), based on a tight integration between retrieval and adaptation estimation. It exploits a heuristic estimate of the adaptability of a solution; during retrieval, lower and upper bounds for such an estimate are computed for relevant cases and a pivot case is selected, determining which cases have to be considered and which have not. Such a technique has been evaluated on three different domain models and very satisfactory results have been obtained both in terms of accuracy, space and retrieval time
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Case-based reasoning; Case retrieval; Case-based diagnosis
Elenco autori:
Portinale, Luigi; Torasso, Pietro; Magro, Diego
Autori di Ateneo:
MAGRO Diego
Link alla scheda completa:
https://iris.unito.it/handle/2318/7152
Pubblicato in:
LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
Journal
LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
Series
  • Dati Generali

Dati Generali

URL

http://www.springerlink.com; http://www.springerlink.com/content/xn18806nn4570l32/fulltext.pdf
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0