Data di Pubblicazione:
2016
Abstract:
In this work we utilize experimental and simulation techniques to examine the molecular level interaction of water with a MnO(1 × 1) thin film deposited onto Ag(100). The formation of MnO(1 × 1)/Ag(100) was characterized by low energy electron diffraction and scanning tunneling microscopy. Density functional theory (DFT) shows MnO(1 × 1) is thermodynamically more stable than MnO(2 × 1) by ∼0.4 eV per MnO. Upon exposure to 2.5 Torr water vapor at room temperature, X-ray photoemission spectroscopy results show extensive surface hydroxylation attributed to reactivity at MnO(1 × 1) terrace sites. DFT calculations of a water monomer on MnO(1 × 1)/Ag(100) show the dissociated form is energetically more favorable than molecular adsorption, with a hydroxylation activation barrier 0.4 eV per H2O. These results are discussed and contrasted with previous studies of MgO/Ag(100) which show a stark difference in behavior for water dissociation.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Physics and Astronomy (all); Physical and Theoretical Chemistry
Elenco autori:
Arble, Chris; Tong, Xiao; Giordano, Livia; Ferrari, Anna Maria; Newberg, John T.
Link alla scheda completa:
Pubblicato in: