Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Temperature-programmed reduction with NO as a characterization of active Cu in Cu-CHA catalysts for NH3-SCR

Articolo
Data di Pubblicazione:
2019
Abstract:
Temperature programmed reduction with NO (NO-TPR) is introduced as a characterization method, by monitoring the reduction of CuII to CuI in a mixture of NH3 and NO. Since the NO-TPR method is based on the oxidation and reduction half cycles of the NH3-SCR reaction, quantitative information about the amount of active Cu in Cu-CHA is obtained. Furthermore, information on the stability and reactivity of reaction intermediates in the NH3-SCR cycle is obtained as well. The reduction of the Cu is followed by monitoring the consumption of NO, after oxidation of the catalyst in O2 or a mixture of NO and O2 to form the CuII state. Two distinct states of the Cu are revealed. The first state, corresponding to the reduction of a Cu-oxide species, is reduced around 130 °C and is observed at low Cu content only. The second state corresponds to the reduction of a Cu-nitrate species around 200–230 °C. The low-temperature activity of Cu-chabazite catalysts with low Cu content show the same trend as the Cu-nitrate species observed in NO-TPR. The fraction of Cu-oxide in NO-TPR decreases with increasing Cu content, leading to a nonlinear dependence of the NH3-SCR activity on the Cu-content. At high Cu content, all Cu forms a stable Cu-nitrate species, and the NH3-SCR activity becomes proportional to the Cu content. This agrees well with the known behavior of Cu-CHA catalysts, indicating that NO-TPR seems to be a viable method for the characterization of Cu-CHA materials as NH3-SCR catalysts.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
Hammershoi P.S.; Negri C.; Berlier G.; Bordiga S.; Beato P.; Janssens T.V.W.
Autori di Ateneo:
BERLIER Gloria
BORDIGA Silvia
Link alla scheda completa:
https://iris.unito.it/handle/2318/1724986
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1724986/961688/CatSciTec%202019%20OA%20postprint.pdf
Pubblicato in:
CATALYSIS SCIENCE & TECHNOLOGY
Journal
  • Dati Generali

Dati Generali

URL

http://pubs.rsc.org/en/journals/journal/cy
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.5.0