Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Tensor Co-clustering: A Parameter-less Approach

Contributo in Atti di convegno
Data di Pubblicazione:
2020
Abstract:
Tensors co-clustering has been proven useful in many applications, due to its ability of coping with high-dimensional data and sparsity. However, setting up a co-clustering algorithm properly requires the specification of the desired number of clusters for each mode as input parameters. To face this issue, we propose a tensor co-clustering algorithm that does not require the number of desired co-clusters as input, as it optimizes an objective function based on a measure of association across discrete random variables that is not affected by their cardinality. The effectiveness of our algorithm is shown on real-world datasets, also in comparison with state-of-the-art co-clustering methods
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
clustering, tensor, co-clustering
Elenco autori:
Battaglia, Elena; Pensa, Ruggero G.
Autori di Ateneo:
PENSA Ruggero Gaetano
Link alla scheda completa:
https://iris.unito.it/handle/2318/1749118
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1749118/639496/sebd2020_1_online.pdf
Titolo del libro:
Proceedings of the 28th Italian Symposium on Advanced Database Systems,Villasimius, Sud Sardegna, Italy (virtual due to Covid-19 pandemic),June 21-24, 2020
Pubblicato in:
CEUR WORKSHOP PROCEEDINGS
Journal
CEUR WORKSHOP PROCEEDINGS
Series
  • Dati Generali

Dati Generali

URL

http://ceur-ws.org/Vol-2646/11-paper.pdf
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.3.0