Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Decay and smoothness for eigenfunctions of localization operators

Articolo
Data di Pubblicazione:
2020
Abstract:
We study decay and smoothness properties for eigenfunctions of compact localization operators. Operators with symbols a in the wide modulation space M^{p,∞} (containing the Lebesgue space Lp), p<∞, and windows φ_1,φ_2 in the Schwartz class S are known to be compact. We show that their L^2-eigenfuctions with non-zero eigenvalues are indeed highly compressed onto a few Gabor atoms. Similarly, for symbols a in the weighted modulation spaces , the L^2-eigenfunctions of localization operators are actually Schwartz functions. An important role is played by quasi-Banach Wiener amalgam and modulation spaces. As a tool, new convolution relations for modulation spaces and multiplication relations for Wiener amalgam spaces in the quasi-Banach setting are exhibited.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Localization operators; Modulation spaces; Quasi-Banach spaces; Short-time Fourier transform; Time-frequency analysis; Wiener amalgam spaces
Elenco autori:
Bastianoni F.; Cordero E.; Nicola F.
Autori di Ateneo:
CORDERO Elena
Link alla scheda completa:
https://iris.unito.it/handle/2318/1782114
Pubblicato in:
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Journal
  • Dati Generali

Dati Generali

URL

https://arxiv.org/abs/1902.03413
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0