Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

T T ¯ -deformed nonlinear Schrödinger

Articolo
Data di Pubblicazione:
2021
Abstract:
The T T ¯ -deformed classical Lagrangian of a 2D Lorentz invariant theory can be derived from the original one, perturbed only at first order by the bare T T ¯ composite field, through a field-dependent change of coordinates. Considering, as an example, the nonlinear Schrödinger (NLS) model with generic potential, we apply this idea to non-relativistic models. The form of the deformed Lagrangian contains a square-root and is similar but different from that for relativistic bosons. We study the deformed bright, grey and Peregrine’s soliton solutions. Contrary to naive expectations, the T T ¯ -perturbation of nonlinear Schrödinger NLS with quartic potential does not trivially emerge from a standard non-relativistic limit of the deformed sinh-Gordon field theory. The c → ∞ outcome corresponds to a different type of irrelevant deformation. We derive the corresponding Poisson bracket structure, the equations of motion and discuss various interesting aspects of this alternative type of perturbation, including links with the recent literature.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Bethe Ansatz; Integrable Field Theories
Elenco autori:
Ceschin P.; Conti R.; Tateo R.
Autori di Ateneo:
TATEO Roberto
Link alla scheda completa:
https://iris.unito.it/handle/2318/1789677
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1789677/762987/Ceschin2021_Article_TTMathrmTOverlineMathrmT-defor.pdf
Pubblicato in:
JOURNAL OF HIGH ENERGY PHYSICS
Journal
  • Dati Generali

Dati Generali

URL

https://link.springer.com/article/10.1007/JHEP04(2021)121
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0