Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Predicting hemodynamic failure development in PICU using machine learning techniques

Articolo
Data di Pubblicazione:
2021
Abstract:
The present work aims to identify the predictors of hemodynamic failure (HF) developed during pediatric intensive care unit (PICU) stay testing a set of machine learning techniques (MLTs), comparing their ability to predict the outcome of interest. The study involved patients admitted to PICUs between 2010 and 2020. Data were extracted from the Italian Network of Pediatric Intensive Care Units (TIPNet) registry. The algorithms considered were generalized linear model (GLM), recursive partition tree (RPART), random forest (RF), neural networks models, and extreme gradient boosting (XGB). Since the outcome is rare, upsampling and downsampling algorithms have been applied for imbalance control. For each approach, the main performance measures were reported. Among an overall sample of 29, 494 subjects, only 399 developed HF during the PICU stay. The median age was about two years, and the male gender was the most prevalent. The XGB algorithm outperformed other MLTs in predicting HF development, with a median ROC measure of 0.780 (IQR 0.770-0.793). PIM 3, age, and base excess were found to be the strongest predictors of outcome. The present work provides insights for the prediction of HF development during PICU stay using machine-learning algorithms.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Hemodynamic failure; Imbalance management; Machine learning techniques; Outcome prediction; Picu
Elenco autori:
Comoretto R.I.; Azzolina D.; Amigoni A.; Stoppa G.; Todino F.; Wolfler A.; Gregori D.; Racca F.; Simonini A.; Caramelli F.; Vigna G.; Stancanelli G.; L'Erario M.; Moscatelli A.; Gitto E.; Izzo F.; Montani C.; Marinosci G.Z.; Osello R.; Pettenazzo A.; Alaimo N.; Cecchetti C.; Dotta A.; Perrotta D.; Rossetti E.; Picconi E.; Maiolo G.; Savron F.; Biban P.; Zanonato E.; Lanera C.; Lorenzoni G.; Nasato L.; Ocagli H.
Autori di Ateneo:
COMORETTO Rosanna Irene
Link alla scheda completa:
https://iris.unito.it/handle/2318/1843825
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1843825/946581/Predicting%20Hemodynamic%20Failure%20Development%20in%20PICU%20Using%20Machine%20Learning%20Techniques.pdf
Pubblicato in:
DIAGNOSTICS
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0