Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Extension theory and the calculus of butterflies

Articolo
Data di Pubblicazione:
2016
Abstract:
This paper provides a unified treatment of two distinct viewpoints concerning the classification of group extensions: the first uses weak monoidal functors, the second classifies extensions by means of suitable H2-actions. We develop our theory formally, by making explicit a connection between (non-abelian) G-torsors and fibrations. Then we apply our general framework to the classification of extensions in a semi-abelian context, by means of butterflies [1] between internal crossed modules. As a main result, we get an internal version of Dedecker's theorem on the classification of extensions of a group by a crossed module. In the semi-abelian context, Bourn's intrinsic Schreier-Mac Lane extension theorem [13] turns out to be an instance of our Theorem 6.3. Actually, even just in the case of groups, our approach reveals a result slightly more general than classical Schreier-Mac Lane theorem.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Cohomology; Extension; Fibrations; Obstruction theory; Schreier-mac lane theorem; Torsors
Elenco autori:
Cigoli A.S.; Metere G.
Autori di Ateneo:
CIGOLI Alan Stefano
Link alla scheda completa:
https://iris.unito.it/handle/2318/1837418
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1837418/928745/Cigoli%20A.S.,%20Metere%20G.%20-%20Extension%20theory%20and%20the%20calculus%20of%20butterflies%20(JA%20458%20-%202016).pdf
Pubblicato in:
JOURNAL OF ALGEBRA
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0