Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Neural network correction of astrometric chromaticity

Articolo
Data di Pubblicazione:
2005
Abstract:
In this paper, we deal with the problem of chromaticity, i.e. apparent position variation of stellar images with their spectral distribution, using neural networks (NNs) to analyse and process astronomical images. The goal is to remove this relevant source of systematic error in the data reduction of high precision astrometric experiments, like Gaia. This task can be accomplished thanks to the capability of NNs to solve a non-linear approximation problem, i.e. to construct a hypersurface that approximates a given set of scattered data couples. Images are encoded associating each of them with conveniently chosen moments, evaluated along the y-axis. The technique proposed, in the current framework, reduces the initial chromaticity of a few milliarcseconds to values of few microarcseconds.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
M. GAI; R. CANCELLIERE
Autori di Ateneo:
CANCELLIERE Rossella
Link alla scheda completa:
https://iris.unito.it/handle/2318/36879
Pubblicato in:
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.2.0