Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Boosting the Federation: Cross-Silo Federated Learning without Gradient Descent

Contributo in Atti di convegno
Data di Pubblicazione:
2022
Abstract:
Abstract—Federated Learning has been proposed to develop better AI systems without compromising the privacy of final users and the legitimate interests of private companies. Initially deployed by Google to predict text input on mobile devices, FL has been deployed in many other industries. Since its introduction, Federated Learning mainly exploited the inner working of neural networks and other gradient descent-based algorithms by either exchanging the weights of the model or the gradients computed during learning. While this approach has been very successful, it rules out applying FL in contexts where other models are preferred, e.g., easier to interpret or known to work better. This paper proposes FL algorithms that build federated models without relying on gradient descent-based methods. Specifically, we leverage distributed versions of the AdaBoost algorithm to acquire strong federated models. In contrast with previous approaches, our proposal does not put any constraint on the client-side learning models. We perform a large set of experiments on ten UCI datasets, comparing the algorithms in six non-iidness settings.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
federated learning, cross-silo, boosting, adaboost, ensemble learning
Elenco autori:
Mirko Polato, Roberto Esposito, Marco Aldinucci
Autori di Ateneo:
ALDINUCCI Marco
ESPOSITO Roberto
POLATO Mirko
Link alla scheda completa:
https://iris.unito.it/handle/2318/1857783
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1857783.15/1586619/ijcnn22-internal.pdf
Titolo del libro:
Proceedings of the International Joint Conference on Neural Networks (IJCNN 2022)
Pubblicato in:
PROCEEDINGS OF ... INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS
Series
Progetto:
Third party CINI - "The European PILOT - Pilot using Independent Local & Open Technologies" (H2020-JTI-EuroHPC-2020-1)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (12)


PE6_11 - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) - (2022)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Linguistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Tecnologie Farmaceutiche e Cosmetiche

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Teorie e modelli Matematici
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0