Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Prediction of All-Cause Mortality Following Percutaneous Coronary Intervention in Bifurcation Lesions Using Machine Learning Algorithms

Articolo
Data di Pubblicazione:
2022
Abstract:
Stratifying prognosis following coronary bifurcation percutaneous coronary intervention (PCI) is an unmet clinical need that may be fulfilled through the adoption of machine learning (ML) algorithms to refine outcome predictions. We sought to develop an ML-based risk stratification model built on clinical, anatomical, and procedural features to predict all-cause mortality following contemporary bifurcation PCI. Multiple ML models to predict all-cause mortality were tested on a cohort of 2393 patients (training, n = 1795; internal validation, n = 598) undergoing bifurcation PCI with contemporary stents from the real-world RAIN registry. Twenty-five commonly available patient-/lesion-related features were selected to train ML models. The best model was validated in an external cohort of 1701 patients undergoing bifurcation PCI from the DUTCH PEERS and BIO-RESORT trial cohorts. At ROC curves, the AUC for the prediction of 2-year mortality was 0.79 (0.74-0.83) in the overall population, 0.74 (0.62-0.85) at internal validation and 0.71 (0.62-0.79) at external validation. Performance at risk ranking analysis, k-center cross-validation, and continual learning confirmed the generalizability of the models, also available as an online interface. The RAIN-ML prediction model represents the first tool combining clinical, anatomical, and procedural features to predict all-cause mortality among patients undergoing contemporary bifurcation PCI with reliable performance.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
coronary bifurcation; machine learning; percutaneous coronary intervention; prognosis
Elenco autori:
Burrello, Jacopo; Gallone, Guglielmo; Burrello, Alessio; Jahier Pagliari, Daniele; Ploumen, Eline H; Iannaccone, Mario; De Luca, Leonardo; Zocca, Paolo; Patti, Giuseppe; Cerrato, Enrico; Wojakowski, Wojciech; Venuti, Giuseppe; De Filippo, Ovidio; Mattesini, Alessio; Ryan, Nicola; Helft, Gérard; Muscoli, Saverio; Kan, Jing; Sheiban, Imad; Parma, Radoslaw; Trabattoni, Daniela; Giammaria, Massimo; Truffa, Alessandra; Piroli, Francesco; Imori, Yoichi; Cortese, Bernardo; Omedè, Pierluigi; Conrotto, Federico; Chen, Shao-Liang; Escaned, Javier; Buiten, Rosaly A; Von Birgelen, Clemens; Mulatero, Paolo; De Ferrari, Gaetano Maria; Monticone, Silvia; D'Ascenzo, Fabrizio
Autori di Ateneo:
BURRELLO Jacopo
D'ASCENZO Fabrizio
DE FERRARI Gaetano Maria
GALLONE Guglielmo
MONTICONE Silvia
MULATERO Paolo
Link alla scheda completa:
https://iris.unito.it/handle/2318/1887482
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1887482/1076531/Manuscript.pdf
Pubblicato in:
JOURNAL OF PERSONALIZED MEDICINE
Journal
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.0.1