Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Comparisons between Fourier and STFT multipliers: The smoothing effect of the short-time Fourier transform

Articolo
Data di Pubblicazione:
2024
Abstract:
We study the connection between STFT multipliers $A^{\f_1,\f_2}_{1\otimes m}$ having windows $\f_1,\f_2$, symbols $a\phas=(1\otimes m)\phas=m(\o)$, $\phas\in\rdd$, and the Fourier multipliers $T_{m_2}$ with symbol $m_2$ on $\rd$. We find sufficient and necessary conditions on symbols $m,m_2$ and windows $\f_1,\f_2$ for the equality $T_{m_2}= A^{\f_1,\f_2}_{1\otimes m}$. For $m=m_2$ the former equality holds only for particular choices of window functions in modulation spaces, whereas it never occurs in the realm of Lebesgue spaces. In general, the STFT multiplier $A^{\f_1,\f_2}_{1\otimes m}$, also called localization operator, presents a smoothing effect due to the so-called \emph{two-window short-time Fourier transform} which enters in the definition of $A^{\f_1,\f_2}_{1\otimes m}$. As a by-product we prove necessary conditions for the continuity of anti-Wick operators $A^{\f,\f}_{1\otimes m}: L^p\to L^q$ having multiplier $m$ in weak $L^r$ spaces. Finally, we exhibit the related results for their discrete counterpart: in this setting STFT multipliers are called Gabor multipliers whereas Fourier multiplier are better known as linear time invariant (LTI) filters.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Localization operators; Modulation spaces; Short-time Fourier transform; STFT multipliers; Time-frequency analysis; Wiener amalgam spaces
Elenco autori:
Balazs P.; Bastianoni F.; Cordero E.; Feichtinger H.G.; Schweighofer N.
Autori di Ateneo:
CORDERO Elena
Link alla scheda completa:
https://iris.unito.it/handle/2318/1928499
Pubblicato in:
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Journal
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://www.sciencedirect.com/science/article/pii/S0022247X23005826

Aree Di Ricerca

Settori (2)


PE1_9 - Operator algebras and functional analysis - (2022)

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Teorie e modelli Matematici
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0