Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Gaussian upper bounds for the heat kernel on evolving manifolds

Articolo
Data di Pubblicazione:
2023
Abstract:
In this article, we prove a general and rather flexible upper bound for the heat kernel of a weighted heat operator on a closed manifold evolving by an intrinsic geometric flow. The proof is based on logarithmic Sobolev inequalities and ultracontractivity estimates for the weighted operator along the flow, a method that was previously used by Davies (Amer. J. Math. 109 (1987) 319–334) in the case of a non-evolving manifold. This result directly implies Gaussian-type upper bounds for the heat kernel under certain bounds on the evolving distance function; in particular we find new proofs of Gaussian heat kernel bounds on manifolds evolving by Ricci flow with bounded curvature or positive Ricci curvature. We also obtain similar heat kernel bounds for a class of other geometric flows.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
Buzano R.; Yudowitz L.
Autori di Ateneo:
BUZANO Reto
Link alla scheda completa:
https://iris.unito.it/handle/2318/1928530
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1928530/1182728/Gaussian%20Bounds%20(JLMS%202023).pdf
Pubblicato in:
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (3)


PE1_6 - Geometry and Global Analysis - (2022)

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Algebra e Geometria

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Cosmologia e Universo
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.5.0