Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Modeling Agrobacterium-Mediated Gene Transformation of Tobacco (Nicotiana tabacum)-A Model Plant for Gene Transformation Studies

Articolo
Data di Pubblicazione:
2021
Abstract:
The multilayer perceptron (MLP) topology of an artificial neural network (ANN) was applied to create two predictor models in Agrobacterium-mediated gene transformation of tobacco. Agrobacterium-mediated transformation parameters, including Agrobacterium strain, Agrobacterium cell density, acetosyringone concentration, and inoculation duration, were assigned as inputs for ANN-MLP, and their effects on the percentage of putative and PCR-verified transgenic plants were investigated. The best ANN models for predicting the percentage of putative and PCR-verified transgenic plants were selected based on basic network quality statistics. Ex-post error calculations of the relative approximation error (RAE), the mean absolute error (MAE), the root mean square error (RMS), and the mean absolute percentage error (MAPE) demonstrated the prediction quality of the developed models when compared to stepwise multiple regression. Moreover, significant correlations between the ANN-predicted and the actual values of the percentage of putative transgenes (R-2 = 0.956) and the percentage of PCR-verified transgenic plants (R-2 = 0.671) indicate the superiority of the established ANN models over the classical stepwise multiple regression in predicting the percentage of putative (R-2 = 0.313) and PCR-verified (R-2= 0.213) transgenic plants. The best combination of the multiple inputs analyzed in this investigation, to achieve maximum actual and predicted transgenic plants, was at OD600 = 0.8 for the LB4404 strain of Agrobacterium x 300 mu mol/L acetosyringone x 20 min immersion time. According to the sensitivity analysis of ANN models, the Agrobacterium strain was the most important influential parameter in Agrobacterium-mediated transformation of tobacco. The prediction efficiency of the developed model was confirmed by the data series of Agrobacterium-mediated transformation of an important medicinal plant with low transformation efficiency. The results of this study are pivotal to model and predict the transformation of other important Agrobacterium-recalcitrant plant genotypes and to increase the transformation efficiency by identifying critical parameters. This approach can substantially reduce the time and cost required to optimize multi-factorial Agrobacterium-mediated transformation strategies.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
acetosyringone; artificial neural networks; genetic engineering; inoculation duration; optical density
Elenco autori:
NiedbaƂa, Gniewko; Niazian, Mohsen; Sabbatini, Paolo
Autori di Ateneo:
SABBATINI Paolo
Link alla scheda completa:
https://iris.unito.it/handle/2318/1931592
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1931592/1187874/fpls-12-695110.pdf
Pubblicato in:
FRONTIERS IN PLANT SCIENCE
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (15)


LS2_13 - Systems biology - (2022)

CIBO, AGRICOLTURA e ALLEVAMENTI - Agricoltura e Produzioni Vegetali

CIBO, AGRICOLTURA e ALLEVAMENTI - Allevamento e Produzioni Animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Miglioramento e difesa delle colture

CIBO, AGRICOLTURA e ALLEVAMENTI - Patologia e malattie degli animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Scienze cliniche veterinarie

CIBO, AGRICOLTURA e ALLEVAMENTI - Tecnologie alimentari e microbiologia degli alimenti

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Genetica, Omica e Bioinformatica

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

MEDICINA, SALUTE e BENESSERE - Epidemiologia

MEDICINA, SALUTE e BENESSERE - Malattie neurologiche e neurodegenerative

MEDICINA, SALUTE e BENESSERE - Oncologia e Tumori

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0