Quantum mechanical modelling of the grain-surface formation of acetaldehyde on H2O:CO dirty ice surfaces
Articolo
Data di Pubblicazione:
2023
Abstract:
Acetaldehyde (CH3 CHO) is one of the most detected interstellar complex organic molecules (iCOMs) in the interstellar medium (ISM). These species have a potential biological relevance, as they can be precursors of more complex species from which life could have emerged. The formation of iCOMs in the ISM is a challenge and a matter of debate, whether gas-phase, grain-surface chemistry, or both are needed for their synthesis. In the gas-phase, CH3 CHO can be efficiently synthesized from ethanol and/or ethyl radical. On the grain-surfaces, radical-radical recombinations were traditionally invoked. However, several pitfalls have been recently identified, such as the presence of energy barriers and competitive side reactions (i.e. H abstractions). Here, we investigate a new grain-surface reaction pathway for the formation of acetaldehyde, namely the reaction between CH3 and a CO molecule of a dirty water/CO ice followed by hydrogenation of its product, CH3 CO. To this end, we carried out ab initio computations of the reaction occurring on an ice composed of 75 per cent water and 25 per cent CO molecules. We found that the CH3 + CO(ice) reaction exhibits barriers difficult to overcome in the ISM, either adopting a Langmuir-Hinshelwood or an Eley-Rideal mechanism. The subsequent hydrogenation step is found to be barrierless, provided that the two reacting species have the correct orientation. Therefore, this pathway seems unlikely to occur in the ISM.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
astrochemistry; molecular processes; ISM: molecules
Elenco autori:
Perrero, J; Ugliengo, P; Ceccarelli, C; Rimola, A
Link alla scheda completa:
Link al Full Text:
Pubblicato in: