Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Gibbs sampling for mixtures in order of appearance: the ordered allocation sampler

Articolo
Data di Pubblicazione:
2023
Abstract:
Gibbs sampling methods are standard tools to perform posterior inference for mixture models. These have been broadly classified into two categories: marginal and conditional methods. While conditional samplers are more widely applicable than marginal ones, they may suffer from slow mixing in infinite mixtures, where some form of truncation, either deterministic or random, is required. In mixtures with random number of components, the exploration of parameter spaces of different dimensions can also be challenging. We tackle these issues by expressing the mixture components in the random order of appearance in an exchangeable sequence directed by the mixing distribution. We derive a sampler that is straightforward to implement for mixing distributions with tractable size-biased ordered weights, and that can be readily adapted to mixture models for which marginal samplers are not available. In infinite mixtures, no form of truncation is necessary. As for finite mixtures with random dimension, a simple updating of the number of components is obtained by a blocking argument, thus, easing challenges found in transdimensional moves via Metropolis-Hastings steps. Additionally, sampling occurs in the space of ordered partitions with blocks labeled in the least element order, which endows the sampler with good mixing properties. The performance of the proposed algorithm is evaluated in a simulation study. Supplementary materials for this article are available online.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Dirichlet process; Pitman-Yor process; Size-biased permutations; Species sampling models; Stick-breaking construction
Elenco autori:
Pierpaolo De Blasi; Maria F. Gil-Leyva
Autori di Ateneo:
DE BLASI Pierpaolo
Link alla scheda completa:
https://iris.unito.it/handle/2318/1945730
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1945730/1214180/GibbsOAS.pdf
Pubblicato in:
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
Journal
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://www.tandfonline.com/doi/full/10.1080/10618600.2023.2177298

Aree Di Ricerca

Settori (13)


PE1_15 - Generic statistical methodology and modelling - (2022)

PE6_11 - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) - (2022)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Linguistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Tecnologie Farmaceutiche e Cosmetiche

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Teorie e modelli Matematici
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.2.0