Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Machine learning - based q-RASAR modeling to predict acute contact toxicity of binary organic pesticide mixtures in honey bees

Articolo
Data di Pubblicazione:
2023
Abstract:
We have reported here a quantitative read-across structure-activity relationship (q-RASAR) model for the prediction of binary mixture toxicity (acute contact toxicity) in honey bees. Both the quantitative structure-activity relationship (QSAR) and the similarity-based read-across algorithms are used simultaneously for enhancing the predictability of the model. Several similarity and error-based parameters, obtained from the read-across prediction tool, have been put together with the structural and physicochemical descriptors to develop the final qRASAR model. The calculated statistical and validation metrics indicate the goodness-of-fit, robustness, and good predictability of the partial least squares (PLS) regression model. Machine learning algorithms like ridge regression, linear support vector machine (SVM), and non-linear SVM have been used to further enhance the predictability of the q-RASAR model. The prediction quality of the q-RASAR models outperforms the previously reported quasi-SMILEs-based QSAR model in terms of external correlation coefficient (Q2F1 SVM q-RASAR: 0.935 vs. Q2VLD QSAR: 0.89). In this research, the toxicity values of several new untested binary mixtures have been predicted with the new models, and the reliability of the PLS predictions has been validated by the prediction reliability indicator tool. The q-RASAR approach can be used as reliable, complementary, and integrative to the conventional experimental approaches of pesticide mixture risk assessment.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Artificial intelligence; Bees; Ecotoxicity; Mixing rules; Predictability; Q-RASAR
Elenco autori:
Chatterjee, Mainak; Banerjee, Arkaprava; Tosi, Simone; Carnesecchi, Edoardo; Benfenati, Emilio; Roy, Kunal
Autori di Ateneo:
TOSI Simone
Link alla scheda completa:
https://iris.unito.it/handle/2318/1953382
Pubblicato in:
JOURNAL OF HAZARDOUS MATERIALS
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (13)


LS8_2 - Biodiversity - (2022)

LS9_12 - Ecotoxicology, biohazards and biosafety - (2022)

CIBO, AGRICOLTURA e ALLEVAMENTI - Agricoltura e Produzioni Vegetali

CIBO, AGRICOLTURA e ALLEVAMENTI - Allevamento e Produzioni Animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Chimica e cibo

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Miglioramento e difesa delle colture

CIBO, AGRICOLTURA e ALLEVAMENTI - Tecnologie alimentari e microbiologia degli alimenti

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Energia e Fonti Energetiche

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Foreste e Legno

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Risorsa suolo e ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0