Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Modeling teams performance using deep representational learning on graphs

Articolo
Data di Pubblicazione:
2024
Abstract:
Most human activities require collaborations within and across formal or informal teams. Our understanding of how the collaborative efforts spent by teams relate to their performance is still a matter of debate. Teamwork results in a highly interconnected ecosystem of potentially overlapping components where tasks are performed in interaction with team members and across other teams. To tackle this problem, we propose a graph neural network model to predict a team’s performance while identifying the drivers determining such outcome. In particular, the model is based on three architectural channels: topological, centrality, and contextual, which capture different factors potentially shaping teams’ success. We endow the model with two attention mechanisms to boost model performance and allow interpretability. A first mechanism allows pinpointing key members inside the team. A second mechanism allows us to quantify the contributions of the three driver effects in determining the outcome performance. We test model performance on various domains, outperforming most classical and neural baselines. Moreover, we include synthetic datasets designed to validate how the model disentangles the intended properties on which our model vastly outperforms baselines.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Team performance; Graph neural networks; Graph representation learning; Sub-graph classification
Elenco autori:
Carli, Francesco; Foini, Pietro; Gozzi, Nicolò; Perra, Nicola; Schifanella, Rossano
Autori di Ateneo:
SCHIFANELLA Rossano
Link alla scheda completa:
https://iris.unito.it/handle/2318/1965351
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1965351/1262230/s13688-023-00442-1.pdf
Pubblicato in:
EPJ DATA SCIENCE
Journal
Progetto:
SCHIFANELLA R. US ARMY "DTeam2vec: modeling team performance using representational learning on temporal graphs"
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-023-00442-1

Aree Di Ricerca

Settori (13)


PE3_15 - Statistical physics: phase transitions, condensed matter systems, models of complex systems, interdisciplinary applications - (2022)

PE6_11 - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) - (2022)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Linguistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Tecnologie Farmaceutiche e Cosmetiche

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Teorie e modelli Matematici
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.4.2.0