Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Machine learning approach as an early warning system to prevent foodborne Salmonella outbreaks in northwestern Italy

Articolo
Data di Pubblicazione:
2024
Abstract:
Salmonellosis, one of the most common foodborne infections in Europe, is monitored by food safety surveillance programmes, resulting in the generation of extensive databases. By leveraging tree-based machine learning (ML) algorithms, we exploited data from food safety audits to predict spatiotemporal patterns of salmonellosis in northwestern Italy. Data on human cases confirmed in 2015–2018 (n = 1969) and food surveillance data collected in 2014–2018 were used to develop ML algorithms. We integrated the monthly municipal human incidence with 27 potential predictors, including the observed prevalence of Salmonella in food. We applied the tree regression, random forest and gradient boosting algorithms considering different scenarios and evaluated their predictivity in terms of the mean absolute percentage error (MAPE) and R2. Using a similar dataset from the year 2019, spatiotemporal predictions and their relative sensitivities and specificities were obtained. Random forest and gradient boosting (R2 = 0.55, MAPE = 7.5%) outperformed the tree regression algorithm (R2 = 0.42, MAPE = 8.8%). Salmonella prevalence in food; spatial features; and monitoring efforts in ready-to-eat milk, fruits and vegetables, and pig meat products contributed the most to the models’ predictivity, reducing the variance by 90.5%. Conversely, the number of positive samples obtained for specific food matrices minimally influenced the predictions (2.9%). Spatiotemporal predictions for 2019 showed sensitivity and specificity levels of 46.5% (due to the lack of some infection hotspots) and 78.5%, respectively. This study demonstrates the added value of integrating data from human and veterinary health services to develop predictive models of human salmonellosis occurrence, providing early warnings useful for mitigating foodborne disease impacts on public health.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
food safety; zoonosis; Salmonella infection; spatiotemporal patterns; Machine Learning; imbalanced class distribution; tree regression; random forest; gradient boosting
Elenco autori:
Aitor Garcia‑Vozmediano; Cristiana Maurella; Leonardo A. Ceballos; Elisabetta Crescio; Rosa Meo; Walter Martelli; Monica Pitti; Daniela Lombardi; Daniela Meloni; Chiara Pasqualini; Giuseppe Ru
Autori di Ateneo:
MEO Rosa
Link alla scheda completa:
https://iris.unito.it/handle/2318/1982210
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/1982210/1309908/s13567-024-01323-9.pdf
Pubblicato in:
VETERINARY RESEARCH
Journal
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://veterinaryresearch.biomedcentral.com/articles/10.1186/s13567-024-01323-9

Aree Di Ricerca

Settori (38)


LS7_9 - Public health and epidemiology - (2022)

LS9_10 - Veterinary and applied animal sciences - (2022)

PE6_11 - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) - (2022)

CIBO, AGRICOLTURA e ALLEVAMENTI - Agricoltura e Produzioni Vegetali

CIBO, AGRICOLTURA e ALLEVAMENTI - Allevamento e Produzioni Animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Chimica e cibo

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Miglioramento e difesa delle colture

CIBO, AGRICOLTURA e ALLEVAMENTI - Patologia e malattie degli animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Scienze cliniche veterinarie

CIBO, AGRICOLTURA e ALLEVAMENTI - Tecnologie alimentari e microbiologia degli alimenti

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Linguistica

MEDICINA, SALUTE e BENESSERE - Diagnostica e Imaging

MEDICINA, SALUTE e BENESSERE - Disturbi neuropsichiatrici

MEDICINA, SALUTE e BENESSERE - Epidemiologia

MEDICINA, SALUTE e BENESSERE - Malattie neurologiche e neurodegenerative

MEDICINA, SALUTE e BENESSERE - Management del malato e delle malattie

MEDICINA, SALUTE e BENESSERE - Medicina Rigenerativa e Cellule Staminali

MEDICINA, SALUTE e BENESSERE - Oncologia e Tumori

MEDICINA, SALUTE e BENESSERE - Prevenzione e corretti stili di vita

MEDICINA, SALUTE e BENESSERE - Psicologia clinica

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

MEDICINA, SALUTE e BENESSERE - Trapianti e medicina rigenerativa

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Energia e Fonti Energetiche

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Foreste e Legno

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Risorsa suolo e ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Molecole bioattive

SCIENZE DELLA VITA e FARMACOLOGIA - Sviluppo del sistema nervoso e plasticità

SCIENZE DELLA VITA e FARMACOLOGIA - Tecnologie Farmaceutiche e Cosmetiche

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Teorie e modelli Matematici
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.3.0