Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

On the faces of unigraphic $3$-polytopes

Articolo
Data di Pubblicazione:
2025
Abstract:
A $3$-polytope is a $3$-connected, planar graph. It is called unigraphic if it does not share its vertex degree sequence with any other $3$-polytope, up to graph isomorphism. The classification of unigraphic $3$-polytopes appears to be a difficult problem. In this paper we prove that, apart from pyramids, all unigraphic $3$-polytopes have no $n$-gonal faces for $n\geq 10$. Our method involves defining several planar graph transformations on a given $3$-polytope containing an $n$-gonal face with $n\geq 10$. The delicate part is to prove that, for every such $3$-polytope, at least one of these transformations both preserves $3$-connectivity, and is not an isomorphism.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Mathematics - Combinatorics; Mathematics - Combinatorics; 05C10, 05C40, 05C75, 05C76, 05C07, 05C62, 05C85, 52B05, 52B10
Elenco autori:
Riccardo W. Maffucci
Autori di Ateneo:
MAFFUCCI Riccardo Walter
Link alla scheda completa:
https://iris.unito.it/handle/2318/2020133
Pubblicato in:
EUROPEAN JOURNAL OF COMBINATORICS
Journal
Progetto:
Metodi Discreti e Probabilistici in Matematica con Applicazioni
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

http://arxiv.org/abs/2305.20012v2

Aree Di Ricerca

Settori


PE1_16 - Discrete mathematics and combinatorics - (2024)
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.0.1