Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

On learning agent-based models from data

Articolo
Data di Pubblicazione:
2023
Abstract:
Agent-Based Models (ABMs) are used in several fields to study the evolution of complex systems from micro-level assumptions. However, a significant drawback of ABMs is their inability to estimate agent-specific (or "micro") variables, which hinders their ability to make accurate predictions using micro-level data. In this paper, we propose a protocol to learn the latent micro-variables of an ABM from data. We begin by translating an ABM into a probabilistic model characterized by a computationally tractable likelihood. Next, we use a gradient-based expectation maximization algorithm to maximize the likelihood of the latent variables. We showcase the efficacy of our protocol on an ABM of the housing market, where agents with different incomes bid higher prices to live in high-income neighborhoods. Our protocol produces accurate estimates of the latent variables while preserving the general behavior of the ABM. Moreover, our estimates substantially improve the out-of-sample forecasting capabilities of the ABM compared to simpler heuristics. Our protocol encourages modelers to articulate assumptions, consider the inferential process, and spot potential identification problems, thus making it a useful alternative to black-box data assimilation methods.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
Monti, Corrado; Pangallo, Marco; De Francisci Morales, Gianmarco; Bonchi, Francesco
Link alla scheda completa:
https://iris.unito.it/handle/2318/2027014
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2027014/1400881/s41598-023-35536-3%20(7).pdf
Pubblicato in:
SCIENTIFIC REPORTS
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (3)


PE1_13 - Probability - (2024)

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Probabilità e Statistica

SOCIETA', POLITICA, DIRITTO e RELAZIONI INTERNAZIONALI - Statistica Applicata e Sociale
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0