Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Combining SHAP-driven Co-clustering and Shallow Decision Trees to Explain XGBoost

Contributo in Atti di convegno
Data di Pubblicazione:
2025
Abstract:
Transparency is a non-functional requirement of machine learning that promotes interpretable or easily explainable outcomes. Unfortunately, interpretable classification models, such as linear, rule-based, and decision tree models, are superseded by more accurate but complex learning paradigms, such as deep neural networks and ensemble methods. For tabular data classification, more specifically, models based on gradient-boosted tree ensembles, such as XGBoost, are still competitive compared to deep learning ones, so they are often preferred to the latter. However, they share the same interpretability issues, due to the complexity of the learnt model and, consequently, of the predictions. While the problem of computing local explanations is largely addressed, the problem of extracting global explanations is scarcely investigated. Existing solutions consist of computing some feature importance score, or extracting approximate surrogate trees from the learnt forest, or even using a black-box explainability method. However, those methods either have poor fidelity or their comprehensibility is questionable. In this paper, we propose to fill this gap by leveraging the strong theoretical basis of the SHAP framework in the context of co-clustering and feature selection. As a result, we are able to extract shallow decision trees that explain XGBoost with competitive fidelity and higher comprehensibility compared to two recent state-of-the-art competitors.
Tipologia CRIS:
04A-Conference paper in volume
Keywords:
Explainable AI, SHAP values, Co-clustering
Elenco autori:
R.G. Pensa, A. Crombach, S. Peignier, C. Rigotti
Autori di Ateneo:
PENSA Ruggero Gaetano
Link alla scheda completa:
https://iris.unito.it/handle/2318/2032194
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2032194/1422738/ds2024_author.pdf
Titolo del libro:
Discovery Science - 27th International Conference, DS 2024, Pisa, Italy, October 14-16, 2024, Proceedings, LNCS
Pubblicato in:
LECTURE NOTES IN COMPUTER SCIENCE
Journal
LECTURE NOTES IN COMPUTER SCIENCE
Series
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://link.springer.com/chapter/10.1007/978-3-031-78977-9_24

Aree Di Ricerca

Settori (12)


PE6_11 - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CULTURA, ARTE e CREATIVITA' - Culture moderne

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Cultura e della Creatività

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Digitalizzazione della Società e della Pubblica Amministrazione

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Industria X.0

INFORMATICA, AUTOMAZIONE e INTELLIGENZA ARTIFICIALE - Salute e Informatica

LINGUE e LETTERATURA - Linguistica

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Diritto dell'Ambiente

PIANETA TERRA, AMBIENTE, CLIMA, ENERGIA e SOSTENIBILITA' - Informatica e Ambiente

SCIENZE DELLA VITA e FARMACOLOGIA - Tecnologie Farmaceutiche e Cosmetiche

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Teorie e modelli Matematici
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0