Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Predicting Postoperative Length of Stay in Patients Undergoing Laparoscopic Right Hemicolectomy for Colon Cancer: A Machine Learning Approach Using SICE (Società Italiana di Chirurgia Endoscopica) CoDIG Data

Articolo
Data di Pubblicazione:
2024
Abstract:
The evolution of laparoscopic right hemicolectomy, particularly with complete mesocolic excision (CME) and central vascular ligation (CVL), represents a significant advancement in colon cancer surgery. The CoDIG 1 and CoDIG 2 studies highlighted Italy’s progressive approach, providing useful findings for optimizing patient outcomes and procedural efficiency. Within this context, accurately predicting postoperative length of stay (LoS) is crucial for improving resource allocation and patient care, yet its determination through machine learning techniques (MLTs) remains underexplored. This study aimed to harness MLTs to forecast the LoS for patients undergoing right hemicolectomy for colon cancer, using data from the CoDIG 1 (1224 patients) and CoDIG 2 (788 patients) studies. Multiple MLT algorithms, including random forest (RF) and support vector machine (SVM), were trained to predict LoS, with CoDIG 1 data used for internal validation and CoDIG 2 data for external validation. The RF algorithm showed a strong internal validation performance, achieving the best performances and a 0.92 ROC in predicting long-term stays (more than 5 days). External validation using the SVM model demonstrated 75% ROC values. Factors such as fast-track protocols, anastomosis, and drainage emerged as key predictors of LoS. Integrating MLTs into predicting postoperative LOS in colon cancer surgery offers a promising avenue for personalized patient care and improved surgical management. Using intraoperative features in the algorithm enables the profiling of a patient’s stay based on the planned intervention. This issue is important for tailoring postoperative care to individual patients and for hospitals to effectively plan and manage long-term stays for more critical procedures.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
colon cancer; laparoscopy; length of stay; machine learning; right hemicolectomy
Elenco autori:
Anania, Gabriele; Chiozza, Matteo; Pedarzani, Emma; Resta, Giuseppe; Campagnaro, Alberto; Pedon, Sabrina; Valpiani, Giorgia; Silecchia, Gianfranco; Mascagni, Pietro; Cuccurullo, Diego; Reddavid, Rossella; Azzolina, Danila; On Behalf Of Sice CoDIG ColonDx Italian Group, null
Autori di Ateneo:
REDDAVID Rossella
Link alla scheda completa:
https://iris.unito.it/handle/2318/2034803
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2034803/1432679/Predicting%20Postoperative%20Length%20of%20Stay%20in%20Patients%20Undergoing%20Laparoscopic%20Right%20Hemicolectomy%20for%20Colon%20Cancer-%20A%20Machine%20Learning%20Approach%20Using%20SICE%20(Societa%BF%20Italiana%20di%20Chirurgia%20Endoscopica)%20CoDIG%20Data.pdf
Pubblicato in:
CANCERS
Journal
  • Aree Di Ricerca

Aree Di Ricerca

Settori (9)


LS4_12 - Cancer - (2024)

CIBO, AGRICOLTURA e ALLEVAMENTI - Farmacologia Veterinaria

CIBO, AGRICOLTURA e ALLEVAMENTI - Patologia e malattie degli animali

CIBO, AGRICOLTURA e ALLEVAMENTI - Scienze cliniche veterinarie

MEDICINA, SALUTE e BENESSERE - Epidemiologia

MEDICINA, SALUTE e BENESSERE - Oncologia e Tumori

MEDICINA, SALUTE e BENESSERE - Ricerca Traslazionale e Clinica

MEDICINA, SALUTE e BENESSERE - Trapianti e medicina rigenerativa

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.2.0