Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Contribution to gene expression data analysis by means of set pattern mining

Capitolo di libro
Data di Pubblicazione:
2006
Abstract:
One of the exciting scientific challenges in functional genomics concerns the discovery of biologically relevant patterns from gene expression data. For instance, it is extremely useful to provide putative synexpression groups or transcription modules to molecular biologists. We propose a methodology that has been proved useful in real cases. It is described as a prototypical KDD scenario which starts from raw expression data selection until useful patterns are delivered. It has been validated on real data sets. Our conceptual contribution is (a) to emphasize how to take the most from recent progress in constraint-based mining of set patterns, and (b) to propose a generic approach for gene expression data enrichment. Doing so, we survey our algorithmic breakthrough which has been the core of our contribution to the IST FET cInQ project.
Tipologia CRIS:
02A-Contributo in volume
Keywords:
data mining scenario
Elenco autori:
R. G. Pensa; J. Besson; C. Robardet; J-F. Boulicaut
Autori di Ateneo:
PENSA Ruggero Gaetano
Link alla scheda completa:
https://iris.unito.it/handle/2318/67126
Titolo del libro:
Constraint-based mining and Inductive Databases
Pubblicato in:
LECTURE NOTES IN COMPUTER SCIENCE
Journal
LECTURE NOTES IN COMPUTER SCIENCE
Series
  • Dati Generali

Dati Generali

URL

https://link.springer.com/chapter/10.1007/11615576_15
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.6.1.0