Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Hardy's uncertainty principle for Schrödinger equations with quadratic Hamiltonians

Articolo
Data di Pubblicazione:
2025
Abstract:
Hardy's uncertainty principle is a classical result in harmonic analysis, stating that a function in (Formula presented.) and its Fourier transform cannot both decay arbitrarily fast at infinity. In this paper, we extend this principle to the propagators of Schrödinger equations with quadratic Hamiltonians, known in the literature as metaplectic operators. These operators generalize the Fourier transform and have captured significant attention in recent years due to their wide-ranging applications in time-frequency analysis, quantum harmonic analysis, signal processing, and various other fields. However, the involved structure of these operators requires careful analysis, and most results obtained so far concern special propagators that can basically be reduced to rescaled Fourier transforms. The main contributions of this work are threefold: (1) we extend Hardy's uncertainty principle, covering all propagators of Schrödinger equations with quadratic Hamiltonians, (2) we provide concrete examples, such as fractional Fourier transforms, which arise when considering anisotropic harmonic oscillators, (3) we suggest Gaussian decay conditions in certain directions only, which are related to the geometry of the corresponding Hamiltonian flow.
Tipologia CRIS:
03A-Articolo su Rivista
Elenco autori:
Cordero E.; Giacchi G.; Malinnikova E.
Autori di Ateneo:
CORDERO Elena
Link alla scheda completa:
https://iris.unito.it/handle/2318/2067192
Link al Full Text:
https://iris.unito.it/retrieve/handle/2318/2067192/1750217/2025-Journal%20of%20London%20Math%20Soc.pdf
Pubblicato in:
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY
Journal
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70134

Aree Di Ricerca

Settori (2)


PE1_8 - Analysis - (2024)

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Teorie e modelli Matematici
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.5.5.0