Skip to Main Content (Press Enter)

Logo UNITO
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione

UNI-FIND
Logo UNITO

|

UNI-FIND

unito.it
  • ×
  • Home
  • Pubblicazioni
  • Progetti
  • Persone
  • Competenze
  • Settori
  • Strutture
  • Terza Missione
  1. Pubblicazioni

Piecewise convex embeddability on linear orders

Articolo
Data di Pubblicazione:
2025
Abstract:
Given a nonempty set L of linear orders, we say that the linear order L is L-convex embeddable into the linear order L′ if it is possible to partition L into convex sets indexed by some element of L which are isomorphic to convex subsets of L′ ordered in the same way. This notion generalizes convex embeddability and (finite) piecewise convex embeddability (both studied in [13]), which are the special cases L={1} and L=Fin. We focus mainly on the behavior of these relations on the set of countable linear orders, first characterizing when they are transitive, and hence a quasi-order. We then study these quasi-orders from a combinatorial point of view, and analyze their complexity with respect to Borel reducibility. Finally, we extend our analysis to uncountable linear orders.
Tipologia CRIS:
03A-Articolo su Rivista
Keywords:
Borel reducibility; Convex embeddability; Linear orders; Piecewise convex embeddability
Elenco autori:
Iannella M.; Marcone A.; Motto Ros L.; Weinstein V.
Autori di Ateneo:
MOTTO ROS Luca
Link alla scheda completa:
https://iris.unito.it/handle/2318/2068190
Pubblicato in:
ANNALS OF PURE AND APPLIED LOGIC
Journal
  • Dati Generali
  • Aree Di Ricerca

Dati Generali

URL

https://arxiv.org/abs/2312.01198

Aree Di Ricerca

Settori (3)


PE1_1 - Logic and foundations - (2024)

SCIENZE DELLA VITA e FARMACOLOGIA - Interazioni tra molecole, cellule, organismi e ambiente

SCIENZE MATEMATICHE, CHIMICHE, FISICHE - Storia e insegnamento della Matematica
  • Utilizzo dei cookie

Realizzato con VIVO | Designed by Cineca | 25.7.0.0